A Unified AI and Quantum Computing Framework for Healthcare Modernization with SAP Integration and Secure Cloud Data Platforms
DOI:
https://doi.org/10.15662/IJRAI.2025.0806813Keywords:
AI in Healthcare, Quantum Computing, SAP Integration, Lakehouse Architecture, Secure Data Platforms, Healthcare Modernization, Predictive Analytics, Interoperability, Data Governance, Clinical Decision SupportAbstract
This paper presents an integrated framework for modernizing healthcare through the convergence of artificial intelligence (AI), quantum computing, SAP ecosystem integration, and lakehouse-based secure data platforms. The proposed architecture addresses critical industry challenges—including fragmented data landscapes, slow analytics pipelines, limited predictive capabilities, and stringent regulatory requirements—by unifying operational, clinical, and administrative data flows. AI models deployed across a lakehouse architecture enable real-time insights, advanced diagnostics, and personalized treatment pathways while maintaining strict data governance and privacy controls. Quantum computing augments the system’s computational capacity in optimization, drug discovery, and complex pattern analysis, offering performance gains unattainable with classical systems alone. Seamless integration with the SAP ecosystem ensures automated processes, interoperable workflows, and consistent enterprise-wide data alignment across ERP, EMR, and supply chain operations. The resulting framework provides a scalable, secure, and compliant digital health infrastructure that supports value-based care, operational resilience, and accelerated innovation across healthcare providers, payers, and life sciences organizations.
References
1. Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K., & Zhang, L. (2016). Deep learning with differential privacy. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, 308–318.
2. Adari, V. K. (2020). Intelligent Care at Scale AI-Powered Operations Transforming Hospital Efficiency. International Journal of Engineering & Extended Technologies Research (IJEETR), 2(3), 1240-1249.
3. Poornima, G., & Anand, L. (2025). Medical image fusion model using CT and MRI images based on dual scale weighted fusion based residual attention network with encoder-decoder architecture. Biomedical Signal Processing and Control, 108, 107932.
4. Suchitra, R. (2023). Cloud-Native AI model for real-time project risk prediction using transaction analysis and caching strategies. International Journal of Research Publications in Engineering, Technology and Management (IJRPETM), 6(1), 8006–8013. https://doi.org/10.15662/IJRPETM.2023.0601002
5. Kiran, A., & Kumar, S. A methodology and an empirical analysis to determine the most suitable synthetic data generator. IEEE Access 12, 12209–12228 (2024).
6. Sugumar, R. (2025, March). Diabetes Insights: Gene Expression Profiling with Machine Learning and NCBI Datasets. In 2025 7th International Conference on Intelligent Sustainable Systems (ICISS) (pp. 712-718). IEEE.
7. Christadoss, J., Kalyanasundaram, P. D., & Vunnam, N. (2024). Hybrid GraphQL-FHIR Gateway for Real-Time Retail-Health Data Interchange. Essex Journal of AI Ethics and Responsible Innovation, 4, 204-238.
8. Pasumarthi, A. (2023). Dynamic Repurpose Architecture for SAP Hana Transforming DR Systems into Active Quality Environments without Compromising Resilience. International Journal of Engineering & Extended Technologies Research (IJEETR), 5(2), 6263-6274.
9. Kotapati, V. B. R., Perumalsamy, J., & Yakkanti, B. (2022). Risk-Adapted Investment Strategies using Quantum-enhanced Machine Learning Models. American Journal of Autonomous Systems and Robotics Engineering, 2, 279-312.
10. Nagarajan, G. (2022). Optimizing project resource allocation through a caching-enhanced cloud AI decision support system. International Journal of Computer Technology and Electronics Communication, 5(2), 4812–4820. https://doi.org/10.15680/IJCTECE.2022.0502003
11. Kandula, N. Evolution and Impact of Data Warehousing in Modern Business and Decision Support Systems
12. Kumar, S. N. P. (2025). Scalable Cloud Architectures for AI-Driven Decision Systems. Journal of Computer Science and Technology Studies, 7(8), 416-421.
13. Peram, S. R. (2025). Cloud Security Reinvented: A Predictive Algorithm for User Behavior-Based Threat Scoring. Journal of Business Intelligence and Data Analytics, 2(3), 252. https://www.researchgate.net/publication/395585801_Cloud_Security_Reinvented_A_Predictive_Algorithm_for_User_Behavior-Based_Threat_Scoring
14. Kumar, R. K. (2022). AI-driven secure cloud workspaces for strengthening coordination and safety compliance in distributed project teams. International Journal of Research and Applied Innovations (IJRAI), 5(6), 8075–8084. https://doi.org/10.15662/IJRAI.2022.0506017
15. Muthusamy, M. (2024). Cloud-Native AI metrics model for real-time banking project monitoring with integrated safety and SAP quality assurance. International Journal of Research and Applied Innovations (IJRAI), 7(1), 10135–10144. https://doi.org/10.15662/IJRAI.2024.0701005
16. Bairi, A. R., Thangavelu, K., & Keezhadath, A. A. (2024). Quantum Computing in Test Automation: Optimizing Parallel Execution with Quantum Annealing in D-Wave Systems. Journal of Artificial Intelligence General science (JAIGS) ISSN: 3006-4023, 5(1), 536-545.
17. Konda, S. K. (2024). AI Integration in Building Data Platforms: Enabling Proactive Fault Detection and Energy Conservation. International Journal of Advanced Research in Computer Science & Technology (IJARCST), 7(3), 10327-10338.
18. Nagarajan, G. (2022). Optimizing project resource allocation through a caching-enhanced cloud AI decision support system. International Journal of Computer Technology and Electronics Communication, 5(2), 4812–4820. https://doi.org/10.15680/IJCTECE.2022.0502003
19. Radford, A., Kim, J. W., Hallacy, C., et al. (2021). Learning transferable visual models from natural language supervision. Proceedings of the 38th International Conference on Machine Learning, PMLR 139:8748–8763.
20. Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention (MICCAI), 234–241.
21. Uddandarao, D. P. Improving Employment Survey Estimates in Data-ScarceRegions Using Dynamic Bayesian Hierarchical Models: Addressing Measurement Challenges in Developing Countries. Panamerican Mathematical Journal, 34(4), 2024. https://doi.org/10.52783/pmj.v34.i4.5584
22. Kesavan, E., Srinivasulu, S., & Deepak, N. M. (2025, July). Cloud Computing for Internet of Things (IoT): Opportunities and Challenges. In 2025 2nd International Conference on Computing and Data Science (ICCDS) (pp. 1-6). IEEE.
23. Tamizharasi, S., Rubini, P., Saravana Kumar, S., & Arockiam, D. Adapting federated learning-based AI models to dynamic cyberthreats in pervasive IoT environments.
24. Kusumba, S. (2025). Modernizing Healthcare Finance: An Integrated Budget Analytics Data Warehouse for Transparency and Performance. Journal of Computer Science and Technology Studies, 7(7), 567-573.
25. Sivaraju, P. S. (2024). Driving Operational Excellence Via Multi-Market Network Externalization: A Quantitative Framework for Optimizing Availability, Security, And Total Cost in Distributed Systems. International Journal of Research and Applied Innovations, 7(5), 11349-11365.
26. Adari, V. K. (2024). The Path to Seamless Healthcare Data Exchange: Analysis of Two Leading Interoperability Initiatives. International Journal of Research Publications in Engineering, Technology and Management (IJRPETM), 7(6), 11472-11480.
27. Vasugi, T. (2023). AI-empowered neural security framework for protected financial transactions in distributed cloud banking ecosystems. International Journal of Advanced Research in Computer Science & Technology, 6(2), 7941–7950. https://doi.org/0.15662/IJARCST.2023.0602004
28. Achari, A. P. S. K., & Sugumar, R. (2025, March). Performance analysis and determination of accuracy using machine learning techniques for decision tree and RNN. In AIP Conference Proceedings (Vol. 3252, No. 1, p. 020008). AIP Publishing LLC.
29. Archana, R., & Anand, L. (2025). Residual u-net with Self-Attention based deep convolutional adaptive capsule network for liver cancer segmentation and classification. Biomedical Signal Processing and Control, 105, 107665.





