International Journal of Research and Applied Innovations (IJRAI)

| ISSN: 2455-1864 | www.ijrai.org | editor@ijrai.org | A Bimonthly, Scholarly and Peer-Reviewed Journal |

|IVolume 5, Issue 2, March - April 2022||

DOI:10.15662/1JRAI.2022.0502007

Feedback-Driven Runtime Adaptation for
Synchronization Primitives

Sanjay Mishra
Engineering Manager, Swift Inc., Washington DC Metro Area, USA

Email: sanjay.amu28@gmail.com

ABSTRACT: Modern multithreaded applications operate under highly dynamic execution conditions, where
contention patterns on shared data structures vary significantly over time due to phase changes, workload skew, and
platform-specific scheduling effects. Conventional synchronization primitives—such as pure spin locks, queue-based
locks, or blocking mutexes—are static by design and therefore optimized for only a narrow operating regime. As a
result, developers are forced to choose a single synchronization strategy that may perform well in one phase but poorly
in another.

This paper presents Feedback-Driven Runtime Adaptation for Synchronization Primitives, a practical framework
that treats synchronization as a closed-loop control problem. Rather than proposing a new lock algorithm, we
continuously observe lightweight contention telemetry, estimate runtime pressure, and adapt synchronization behavior
using simple, explainable policies augmented with explicit stability constraints. We instantiate the framework for a
mutex-like primitive in portable user-space C++ and evaluate it on a modern ARM-based Apple M1 system under non-
stationary workloads. Experimental results demonstrate that feedback-driven adaptation induces bounded and
meaningful behavioral changes under contention, trading peak throughput for improved predictability and robustness
while avoiding oscillatory behavior. The results confirm that controlled runtime adaptation provides a viable alternative
to static synchronization strategies in modern systems.

KEYWORDS: Synchronization, runtime adaptation, feedback control, multithreading, contention management,
systems performance

I. INTRODUCTION

Synchronization primitives are fundamental to the correctness and performance of multithreaded software. Mutexes,
read—-write locks, and related constructs serialize access to shared state, but their performance characteristics depend
strongly on runtime conditions such as thread count, critical section length, and scheduling behavior. No single
synchronization strategy dominates across all regimes: busy-waiting approaches favor short critical sections and low
contention, while queue-based or blocking approaches reduce pathological waiting under heavy contention.

Despite this diversity, most synchronization primitives remain static. Their internal behavior is fixed at design time,
forcing developers to select a single trade-off that must hold across the entire execution. Real-world workloads,
however, are rarely stationary. Applications commonly transition between compute-heavy phases and synchronization-
heavy phases, exhibit bursty access patterns, or experience changing contention as system load fluctuates.

Prior work has explored adaptive or hybrid synchronization mechanisms, including optimistic spinning and mixed
spin-block strategies. While effective in specific contexts, these approaches are often tightly coupled to kernel
implementations, specialized to a single primitive, or difficult to reason about due to complex learning-based policies.

In this paper, we ask the following question:

Can synchronization performance be improved by treating synchronization itself as a feedback-controlled
runtime system, using simple and stable adaptation policies that are portable and predictable?

We answer this question by introducing a feedback-driven adaptation framework that continuously adjusts
synchronization behavior based on observed contention while explicitly constraining adaptation overhead.

1JRAI©2022 | An1SO 9001:2008 Certified Journal | 6784

International Journal of Research and Applied Innovations (IJRAI)

| ISSN: 2455-1864 | www.ijrai.org | editor@ijrai.org | A Bimonthly, Scholarly and Peer-Reviewed Journal |

|IVolume 5, Issue 2, March - April 2022||

DOI:10.15662/1JRAI.2022.0502007

Contributions
This paper makes the following contributions:
1. Framework: We formulate runtime synchronization adaptation as a closed-loop feedback control problem,
separating observation, decision, and actuation.
2. Design: We propose lightweight, explainable adaptation policies incorporating smoothing, cooldown, and
budget constraints to ensure stability.
3. Implementation: We implement a feedback-driven adaptive mutex in portable user-space C++ without kernel
support.
4. Evaluation: We demonstrate, via reproducible experiments on a modern ARM-based platform, that feedback-
driven adaptation induces bounded behavioral changes under non-stationary contention, improving
predictability while avoiding oscillation.

Il. BACKGROUND AND RELATED WORK

Synchronization has been extensively studied in operating systems and concurrent programming. Classic designs such
as test-and-set spin locks, ticket locks, and queue-based locks (e.g., MCS) expose fundamental trade-offs among
throughput, fairness, and scalability. Blocking mutexes reduce CPU waste under contention but introduce context-
switch overhead.

Hybrid approaches attempt to combine these techniques. Kernel mutexes often employ optimistic spinning before
parking, and user-space libraries provide adaptive spinning heuristics. Research prototypes have also explored adaptive
or learning-based synchronization strategies that dynamically select between spinning and blocking.

Our work differs from prior approaches in two key respects. First, we explicitly frame synchronization as a feedback-
controlled system, rather than embedding ad hoc heuristics into a specific primitive. Second, we emphasize stability
and predictability, incorporating explicit constraints to bound adaptation frequency and overhead. This design enables
portable user-space implementations that are easy to reason about and reproduce.

I1l. PROBLEM STATEMENT

We consider multithreaded applications executing on shared-memory multiprocessors. Threads coordinate access to
shared resources using synchronization primitives whose performance depends on runtime contention.
The problem addressed in this paper is:
How can synchronization primitives adapt at runtime to non-stationary contention patterns in a stable,
portable, and predictable manner?
Any solution must satisfy the following requirements:
e Correctness: Mutual exclusion and ordering guarantees must be preserved.
Stability: Adaptation must avoid oscillation and excessive reconfiguration.
Low Overhead: Observation and decision logic must not dominate critical paths.
Portability: The approach should operate entirely in user space without kernel modifications.

IV. FEEDBACK-DRIVEN ADAPTATION MODEL

We model synchronization adaptation as a discrete-time closed-loop control system driven by lock acquisition events.
4.1 Telemetry Observation
At runtime, the system collects lightweight telemetry over a sliding window of lock acquisitions, including:
e Average lock wait time (microseconds)
e Ratio of failed try-lock attempts
This telemetry forms an observation vector summarizing recent contention pressure.

4.2 State Estimation

Telemetry is mapped to a normalized contention estimate 0, € [0, 1] using a simple scaling function. To reduce
sensitivity to transient spikes, the estimate is smoothed using an exponentially weighted moving average:

=00+ (1 —a) 0

where 0 < a < 1 controls responsiveness.

1JRAI©2022 | An1SO 9001:2008 Certified Journal | 6785

International Journal of Research and Applied Innovations (IJRAI)

| ISSN: 2455-1864 | www.ijrai.org | editor@ijrai.org | A Bimonthly, Scholarly and Peer-Reviewed Journal |

|IVolume 5, Issue 2, March - April 2022||

DOI:10.15662/1JRAI.2022.0502007

4.3 Control Policy
The synchronization primitive operates in one of three modes: spin-dominant, hybrid (spin-then-block), or blocking-
dominant. Mode transitions are selected using threshold-based policies over 6.

4.4 Stability Constraints

To prevent oscillation, we impose explicit stability constraints:
e Cooldown: A minimum number of lock acquisitions must elapse between mode changes.
e Budget: The number of mode changes is bounded over a rolling window.

These constraints ensure that adaptation is deliberate and bounded.

V. ADAPTIVE SYNCHRONIZATION DESIGN

We instantiate the framework for a mutex-like synchronization primitive implemented entirely in user space. The
adaptive mutex selects among spinning, hybrid spin-block, and blocking behavior at runtime based on the controller’s
decisions. Telemetry collection and adaptation logic are amortized over many acquisitions to minimize overhead.
Algorithm 1 summarizes the feedback-driven adaptation policy used by the adaptive mutex. We provide an intuitive
explanation of the algorithm below to aid understanding and reproducibility.

5.1 Algorithm 1: Feedback-Driven Adaptation Policy (Intuition and Mathematics)

Algorithm 1 implements a closed-loop controller that maps observed contention into discrete synchronization modes.
At each adaptation point, the controller receives a telemetry vector summarizing recent lock behavior. This telemetry is
first converted into a normalized contention estimate 8, € [0,1], where larger values indicate higher contention pressure.
To avoid reacting to short-lived fluctuations, the controller applies exponential smoothing:

=00+ (1 —)6

The smoothed estimate 6; is compared against two thresholds, © low and t_high, which partition the operating space
into three regimes: low contention (spin-dominant), moderate contention (hybrid), and high contention (blocking-
dominant). This threshold-based policy is simple, interpretable, and inexpensive to compute.

Crucially, Algorithm 1 incorporates explicit stability constraints. A cooldown constraint enforces a minimum number
of lock acquisitions between successive mode changes, while a budget constraint bounds the total number of
adaptations over a rolling window. Together, these mechanisms ensure that adaptation remains deliberate and bounded,
preventing oscillatory behavior even under rapidly changing contention.

VI. EXPERIMENTAL METHODOLOGY

Experiments are conducted on an Apple M1 system running macOS. All implementations are written in C++20 and
compiled with high optimization. No kernel-level instrumentation or platform-specific synchronization primitives are
used.

6.1 Workloads

We evaluate synthetic microbenchmarks designed to expose non-stationary contention. Each benchmark executes a
sequence of phases alternating between low and high contention by varying the fraction of operations entering critical
sections and the amount of work performed while holding locks.

6.2 Baselines
We compare the adaptive mutex against:
e Aticket-based spin lock
e The standard library mutex
All primitives enforce identical correctness semantics.

6.3 Metrics

We measure throughput (operations per second), tail lock wait time (p99), and adaptation overhead (number of mode
switches). Experiments are repeated with fixed random seeds to ensure reproducibility.

1JRAI©2022 | An1SO 9001:2008 Certified Journal | 6786

International Journal of Research and Applied Innovations (IJRAI)

| ISSN: 2455-1864 | www.ijrai.org | editor@ijrai.org | A Bimonthly, Scholarly and Peer-Reviewed Journal |

|IVolume 5, Issue 2, March - April 2022||

DOI:10.15662/1JRAIL.2022.0502007

A reference implementation of the benchmark harness and adaptive mutex is publicly available to support
reproducibility.

VII. EVALUATION

7.1 Adaptation Behavior

Across experiments, the adaptive mutex exhibits non-zero mode switches under elevated contention, confirming that
the feedback loop actively responds to runtime conditions. The number of mode transitions remains small,
demonstrating the effectiveness of stability constraints in preventing oscillatory behavior.

7.2 Throughput

Figure 2 reports throughput under phase-changing workloads. The figure compares static synchronization primitives
with the feedback-driven adaptive mutex across increasing thread counts. The results illustrate that no single static
strategy dominates across all phases, while the adaptive mutex converges toward conservative behavior under heavy
contention, trading peak throughput for stability. Static primitives perform well only within specific regimes. The
adaptive mutex does not universally maximize throughput; instead, it converges toward conservative behavior under
heavy contention. This behavior reflects an intentional trade-off, prioritizing stability over peak throughput.

le6 Fig. 2 — Throughput Under Phase-Changing Contention
adaptive
8 std_mutex
ticketlock
7 -
=)
A
&
=
S 6
=
=
=
[=2]
g 51
P
4 —
3 .
1 2 3 4 5 6 7 8
Threads

Fig.2. Throughput (operations per second) under phase-changing contention for increasing thread counts. Static
synchronization primitives perform well only within specific regimes, while the feedback-driven adaptive mutex
converges toward conservative behavior under heavy contention, trading peak throughput for stability.

7.3 Tail Latency and Predictability

Figure 3 shows p99 lock wait times. Under high contention, spin-based primitives exhibit large tail latencies due to
excessive busy-waiting. The adaptive mutex mitigates these extremes by transitioning away from pure spinning,
resulting in more predictable tail behavior at the cost of reduced peak throughput. Under high contention, spin-based
approaches exhibit large tail latencies. The adaptive mutex moderates these extremes by transitioning away from pure
spinning, resulting in more predictable waiting behavior.

1JRAI©2022 | An ISO 9001:2008 Certified Journal | 6787

International Journal of Research and Applied Innovations (IJRAI)

| ISSN: 2455-1864 | www.ijrai.org | editor@ijrai.org | A Bimonthly, Scholarly and Peer-Reviewed Journal |

|IVolume 5, Issue 2, March - April 2022||

DOI:10.15662/1JRAIL.2022.0502007

Fig. 3 — Tail Lock Wait Time (p99)

80
—— adaptive
70 4 std_mutex
ticketlock
60
£
= 40 +
©
=
= 30
D
o
20 +
10 /
O —
1 2 3 4 5 6 7 8
Threads

Fig.3. Tail lock wait time (p99) across increasing thread counts. Under high contention, spin-based primitives
exhibit large tail latencies due to excessive busy-waiting. The adaptive mutex reduces extreme waiting by
transitioning away from pure spinning, improving predictability.

7.4 Adaptation Overhead

Figure 4 reports cumulative mode switches across all phases. The small number of mode transitions demonstrates that
adaptation overhead is bounded and that the stability mechanisms in Algorithm 1 effectively prevent thrashing.
Adaptation overhead is bounded and modest, with only a small number of transitions per phase, validating the design of
the controller.

Fig. 4 — Adaptation Overhead (Mode Switches)

Mode Switches (count, summed over phases)
SN

4 5 6 7
Threads

H-
N
W

Fig.4. Cumulative mode switches across all phases for the feedback-driven adaptive mutex. The small number of
transitions demonstrates that adaptation overhead is bounded and that the stability constraints in Algorithm 1
effectively prevent oscillatory behavior.

1JRAI©2022 | An ISO 9001:2008 Certified Journal | 6788

International Journal of Research and Applied Innovations (IJRAI)

| ISSN: 2455-1864 | www.ijrai.org | editor@ijrai.org | A Bimonthly, Scholarly and Peer-Reviewed Journal |

|IVolume 5, Issue 2, March - April 2022||

DOI:10.15662/1JRAIL.2022.0502007
VIII. DISCUSSION

The results highlight an important insight: adaptive synchronization should not be evaluated solely on peak throughput.
Under non-stationary workloads, predictability and stability are equally important. Feedback-driven adaptation
provides a mechanism to navigate this trade-off automatically, reducing pathological behavior without excessive
reconfiguration.

IX. LIMITATIONS AND FUTURE WORK

This study focuses on a mutex-like primitive and a single hardware platform. Future work includes extending the
framework to additional synchronization primitives, exploring alternative control policies, and evaluating behavior
across a wider range of architectures and real-world workloads.

X. CONCLUSION

This paper demonstrates that synchronization can be effectively treated as a feedback-controlled runtime system. By
leveraging lightweight telemetry, explainable policies, and explicit stability constraints, feedback-driven runtime
adaptation enables synchronization primitives to respond meaningfully to non-stationary contention while maintaining
predictable behavior. The results suggest that controlled adaptation is a practical and portable alternative to static
synchronization strategies in modern systems.

REFERENCES

[1] J. M. Mellor-Crummey and M. L. Scott, “Algorithms for scalable synchronization on shared-memory
multiprocessors,” ACM TOCS, 1991.

[2] R. Anderson, Security Engineering, Wiley, 2008.

[3] P. Okhravi et al., “Survey of cyber moving target defenses,” IEEE Security & Privacy, 2014.

[4] Dice, Dave, et al. “Flat Combining and the Synchronization-Parallelism Tradeoff.” SPAA, 2010.

[5] He, Yun, et al. “Scalable Locks for Multicore Systems.” IEEE TPDS, 2010.

1JRAI©2022 | An ISO 9001:2008 Certified Journal | 6789

