

Explainability-Driven Differentiation: Responsible AI as a Trust Catalyst in Digital Banking Ecosystems

Neha Tyagi

Senior Vice President, Bank of New York (BNY), USA

ABSTRACT: The recent pace of adopting Artificial Intelligence (AI) in digital banking has unlocked previously unseen efficiencies, although has come at the cost of the transparency, accountability, and user trust. The framework proposed in the paper is called Explainability-Driven Differentiation (EDD), within which Responsible AI is one of the major force behind enhancement of the trust in the digital banking ecosystem. The proposed framework brings together explainable AI (XAI) practices, governance of the ethical models, and adherence to the AI lifecycle in terms of the interpretability of each part of the decision-making process. Some of the key components include: (i) Model Explainability Layer, which exposes the capability to provide explanation of AI-based decisions to end-users and stakeholders in an engaging and real-time manner; (ii) Ethical Oversight Module, which includes the provision of bias mitigation, fairness, and industry standards-compliant system; and (iii) Trust Feedback Loop, providing reporting of the perception of users and dynamically adjusts AI interactions. The framework was used when evaluating a case study on a large digital bank proposed a credit scoring model and tailored recommendation framework. Measures like user trust perception, model transparency and decision accuracy were evaluated. Findings show that the user trust ratings were increased by 32% and the percentage of disputed AI decisions went down by 21% with the implementation of the EDD framework. In addition, the explainability mechanisms proved to be more engaging to customers and decreased the number of compliance-related inquiries, which are clear business and ethical advantages. The paper emphasizes the fact that the responsible AI principles or the explainability, in particular, can become one of the aspects of the digital bank that becomes a distinguishing factor, supporting the long-term relationships between the bank and the customer and the competitive edge. The EDD model provides a flexible model that can be followed to introduce AI transparency and ethics, thereby enabling responsible innovation in the financial sector.

KEYWORDS: *An explainable AI, Responsible AI, Digital banking, Trust, Ethical AI, Customer Engagement, AI Governance, Transparency, Bias Mitigation, AI Accountability, Financial technology, Decision Interpretability, regulatory compliance.*

I. INTRODUCTION

The financial industry has been experiencing a radical change due to digitalization, data outburst, and the rising use of Artificial Intelligence (AI). Specifically, digital banking has developed a new type of banking services that provide personalized financial services, predictive information, and the ability to make decisions instantly [1]. Digital banking AI-driven systems are used to carry out a broad scope of tasks, such as credit scoring, fraud identification, customer segmentation, chatbots, personalized recommendations, and risk management. Although these systems bring major efficiencies and convenience to the operations and the customers, they are also associated with serious issues of transparency, accountability, fairness and trust of the users. The opaque nature of most AI algorithms is frequently connected to the fact that users of their product are often skeptical about the algorithms and the regulatory bodies often scrutinize their decision-making mechanisms. The need to generate trust in AI systems has therefore been a strategic goal of digital banking institutions not only to assure customers of its utilization but also to meet regulatory requirements and ethical principles [2].

A responsible AI, with the concepts included in transparency, fairness, accountability, and explainability, has become one of the guiding principles to solve these issues. Responsible AI means that AI models are used responsibly, that their decisions can be interpreted, and their biases reduced without violating the regulations. Explainability is one of such principles as it enables end-users and stakeholders to have an understandable information on how AI systems reach certain decisions. Explainable AI (XAI) systems are meant to close the disconnect between the complexity of the

algorithm and human cognition, thus allowing users to justify AI-based suggestions, detect and remove possible misinterpretations, and increase trust in automated systems. An example is the use of an explainable model in credit scoring where a customer or bank officer can get an idea of why a specific loan application was or was not approved, and this will create transparency and minimise disputed. Explainability also promotes ethical AI governance because it allows institutions to conduct audits, track, and refine AI models to promote fairness and mitigate bias to reduce the chances of reputational harm and regulatory fines [3].

Digital banking ecosystems are defined by complicated interrelations among various stakeholders, such as retail clients, corporate clients, regulators, technology partners, and internal banking staff. Trust is a key facilitator to the successful operation of these ecosystems, as it shapes the interaction of users, the adoption of AI-powered services, and customer retention [4]. Studies have found that customers would be more willing to communicate with AI systems when they believe that the system is just, responsible, and open. On the other hand, inexplainability and perceived opaqueness may decrease confidence, deter adoption, and increase the rate of dispute especially in sensitive financial areas, including lending, investment advisory and fraud detection. This brings in the explainable-driven differentiation (EDD) in which digital banks are not only using explainable and responsible AI as a compliance measure but also an important differentiator that fosters trust, customer relationships and competitiveness.

The potential Explainability-Driven Differentiation (EDD) framework integrates the idea of responsible AI in into the primary workflows of digital banking along with customer-facing banking. It has three major components, i.e. the Model Explainability Layer, the Ethical Oversight Module and the Trust Feedback Loop. Model Explainability Layer is another model based on XAI, which is designed to explain AI based-decisions in a way that is easy to understand and in real-time. One can point out that SHAP (SHapley Additive Explanations), LIME (Local Interpretable Model-Agnostic Explanations), and counterfactual analysis are the tools that examine and find the main contributors to every decision, which makes it straightforward and understandable. The Ethical Oversight Module is employed to ensure that the AI models are restricted to the set of ethical standards including bias minimization, fairness, and compliance with rules. This module will allow monitoring, audits, and optimization of AI algorithms to align with the values and legal provisions of the organization, without any interruptions. Finally, the feedback, complaints as well as user perception towards the AI decision will be obtained via Trust Feedback Loop to enable the system to learn as a result of that interaction and continue to improve the transparency and reliability.

The introduction of the EDD framework can bring numerous benefits to the digital banking organizations in a multifaceted manner. To start with, it improves the trust and confidence of the user base, which is critical in promoting the usage of AI-based financial services. Reports have shown that users tend to respond more when they know the logic behind AI suggestions, which means that they will not need humans to mediate and enhance operational efficiencies. Second, explainability enhances regulatory compliance because in most financial regulated countries across the world, the focus on transparency, auditability, and equity in using AI has become central to many financial regulators. As an illustration, the AI Act and the guidelines of the European Union support explainable and accountable AI practices in the financial sector. Third, responsible AI and explainability may be used as a competitive advantage meaning that an institution cares about its ethical practices, customer-centricity, and innovativeness. This has the potential to improve brand image, customer loyalty, and satisfaction, which will create a long-term strategic value. Lastly, the framework reduces risks related to algorithmic bias, discrimination, and inaccurate decision-making, which reduces controversies, costs of operation, and negative publicity.

Despite the benefits being obvious, the problems of the explainability-based differentiation implementation continue. The modern AI models including those based on deep learning may be difficult to interpret, especially when the advanced XAI techniques are employed. One of the biggest problems is to find a balance between explainability and predictive power in which in some cases high interpretable models may yield a low predictive power. In addition, an established structure of governance and a cross-disciplinary collaboration is required to bring up the explainability requirements and regulatory demands in alignment with the objectives of the organization. Such challenges were identified about the EDD framework, which provides a transparent, scalable, and stakeholder-oriented structure in such a way that explainability and ethical practices in AI are properly factored into the digital banking configuration.

In conclusion, the launch of explainability-based responsible AI in digital banking is a new paradigm shift in the style of trust, transparency, and ethical accountability that the financial institution deals with. The digital banks, through the assistance of Explainability-Driven Differentiation (EDD) framework, can generate more trust in the users, enforce

compliance, minimize bias, and offer competitive advantage to increasingly complex and regulated financial processes. Being still in the environment of changing the banking industry, explainability and responsible AI are not only technical requirements (they are) strategic requirements within the framework of which the sustainability, ethical impropriety, and customer-centricity of the current digital banking ecosystems will rely. The establishment and empirical validation of the EDD framework has provided the blueprint in this paper that can be repeated in order to use AI transparency to become an emulator of the trust and work to make operations perfect and provide confidence to the stakeholders.

II. RELATED WORK

AI has turned out to be the backbone of innovations in the financial industry, offering sophisticated credit evaluation, fraudulent detection, portfolio optimization, and custom banking services [1]-[20]. The implementation of AI has presented the new opportunities that have never been seen before, allowing to increase the efficiency of operations, minimizing costs, and increasing the accuracy of decisions. Nonetheless, the proliferation of AI models, especially black-box models, have also created the challenge of transparency, fairness, accountability, and trust at once. Consequently, the emergence of explainable artificial intelligence (XAI) and responsible artificial intelligence practices has become one of the essential facilitators of ethical and reliable AI implementation in digital banking environments [1]-[20].

One of the main areas of recent research has been on explaining models of credit risk management. Research has found out that predictive models should be interpretable and transparent in order to ensure regulatory compliance and trust among stakeholders [1]. Credit scoring models based on deep learning with SHAP and LIME have been extensively used on deep learning-based models, enabling decision-makers to learn the contributions by features and make adjustments to the model [11], [18]. Other methods proposed to build robust investment portfolios are matrix evolution, and synthetic correlation methods, which provide a tradeoff between predictive accuracy and explainability [7], [8]. These attempts emphasize the fact that financial AI transparency is important not only in the context of internal control but also in inspiring customer trust [1], [6], [7].

To hold the use of AI accountable, regulatory and governance systems have been pointed out. Various studies have outlined a detailed workflow and process to manage along with the evaluation of the AI systems regarding fairness, discrimination, and adherence to ethics [4], [9], [14], [16]. The Z-Inspection (r) is an all-purpose technique to analyze credible AI, such as legal, social, and operation concerns [9]. It has also been proposed, in equal measures, that ethical AI practices can be operationalised through responsible machine learning processes that build interpretable models and discrimination testing [4]. The sense of fairness, digital competencies and ethical cognizance of end-users have been found to be directly affected on the trust and adoption of digital banking platforms [10], [14], [15]. Through insight, it is clear that responsible AI does not just have anything to do with the technical performance but also human-centered evaluation and social responsibility [14], [15].

The question of trust and transparency will always be the highlight of the implementation of AI in the banking sector. Whereas black box AI systems can ruin the trust of the stakeholders and make the regulation suspicious, explainable models can improve awareness and adoption [5], [18]. The explicable AI approaches allow its customers, regulators, and financial people to challenge the results of the models thereby increasing operational flexibility and compliance in a better way [18], [19]. Being made transparent can allow promoting trust, decreasing resistance, and improving the collaboration between human decision-makers and artificial systems as it has been proven in the study [1], [5], [18]. Moreover, case studies indicate that interpretability to AI pipeline testing could help reduce conflicts, improve risk management, and could be motioned to ensure calming lending behavior [5], [11].

Mitigation of bias and fairness is another significant area of research. Algorithms of AI-based financial decisions can also be subject to algorithmic unfairness compromising the ethical validity of aligning AI-based algorithms and negatively influencing user acceptance [15], [17]. Synthetic data generation and fairness constraints as well as unrestrictive post-hoc remedies are debiasing approaches that have been proposed to reduce disparate impact at low predictive cost [8], [17]. The two concepts of fairness and explainability are mutually reinforcing when applied to the ethical AI research: when there are clear models that help to identify the bias in the decision-making process, and when organizations are ready to take suitable actions that are aimed at rectifying the situation [15], [17]. All these actions emphasize the importance of providing ethical focus to the procedure of model designing and evaluation [8], [17].

Several researches have been conducted on the topic of AI adoption and its performance within the industry. Their attitude towards AI by employees, knowledge and perception are a significant factor in how well and whether an organization has adopted AI [10]. Speaking of the same, systems integrating trust, risk, and security management provide a promising approach to eliminating ethical and operational risks involving AI [16]. In studies, it is further noted that the computing platforms and infrastructure are the core of making scalable AI implementations possible and also transparency and auditability [2]. The adoption of refers to the policy recommendations that were proposed by central banks, including the governance measures is underlining the importance of a responsible implementation of AI, and once again, this proves the importance of systematic structures and guidelines of compliance [3].

New research has been investigated into hybrid and better explainable AI practices. As an example, SHAP-LIME integration allows the interpretation and attribution of features of complex AI models in real-time [18]. Explainable models have proved to be effective in credit scoring using open banking data applications, which offers actionable advice to risk managers and auditors [11]. Explainability has also been associated with better investment decision-making, as interpretable portfolio building techniques allow the allocation of risks and a description of its rationale to be transparent [6], [7]. All these solutions demonstrate that the implementation of explainable AI into operational processes can increase their technical and social acceptability [6], [7], [11], [18].

Besides technical explainability, the practices of transparency and accountability have also been recommended extensively [13]. Writing model rationales, deploying audit procedures, and conducting post-deployment review can be viewed as the best practice in responsible AI adherence [13]. Moreover, mutual trust, equality, and moral supervision are the keys to building sustainable AI-based banking systems [14], [16]. The capability of financial institutions to include explainable and ethically-motivated AI allows financial institutions to not only comply with regulations, but also seek strategic differentiation including increased customer trust, reduced operation risk and improved decision-making [1], [19], [20].

Last but not least, there are extensive reviews that explainability-based AI is essential to building responsibility in the field of financial services [20]. Although existing studies tend to concentrate on individual aspects, e.g. fairness, transparency or trust, holistic frameworks incorporating the factors have been few [1]-[20]. The object of the present proposal is to bridge this gap by adopting an explainable AI approach, ethical consideration, and trust-feedback mechanisms to provide an effective, end-to-end approach to responsible AI adoption in digital banking [1]-[20].

In conclusion, it is evident that the literature analyzed reveals that interpretability, ethical issues, and trust-based design of AI systems in the financial sector are essential. Explainable AI has been observed to contribute to compliance, building a stakeholder trust and assist in making decisions without bias [1]-[20]. The reliability and social acceptability of the system can be made even more effective by the use of prejudice reduction, organized governance and hybrid XAI methods [8], [15], [17], [18]. These studies, as a combination, offer a positive foundation of the development of the EDD framework, including technical explainability, ethical criticism, and trust systems to become responsible in using AI in digital banking systems [1]-[20].

III. METHODOLOGY

To facilitate the research process, this study methodology is set in such a manner that it engages in a systematic study that researches on the value of Explainability-Driven Differentiation (EDD) in enhancing trust and responsible adoption of AI in digital banking ecosystems. The study is a combination of conceptual framework design, explainable AI (XAI) methods application, ethical governance practices, and an empirical assessment of the case study methodology. There are four main stages of the methodology: Framework Development, Data Collection and Preprocessing, Integration of Explainable AI and Ethical Oversight, and Evaluation and Analysis.

Data Collection & Preprocessing ,
Data cleaning & feature

Integration of Explainable AI & Ethical Oversight - XAI Techniques:
SHAP, Bias Detection & Mitigation

Trust Feedback Loop , Collect Customer Feedback , Continuous Model
Refinement

Model Evaluation & Metrics

Figure 1: EDD framework in digital banking:

1. Framework Development

The first section of the methodology that involves explainability, ethical governance and trust feedback mechanism is the conceptualization and design of the EDD structure. The framework has three fundamental modules:

1. **Model Explainability Layer (MEL):** The specified module is expected to enhance the explainability of AI-based decisions in terms of end-users and stakeholders. There are such methods as SHAP (SHapley Additive Explanations), LIME (Local Interpretable Model-Agnostic Explanations) and counterfactual explanations that provide the information about the significance of the features, their decision paths and the alternative outcomes. These methods popularize AI decisions, particularly in the banking industry, when they are of high stakes and they are explainable and transparent.

2. **Ethical Oversight Module (EOM):** This aspect will be taken into consideration to impart moral principles into AI models and the AI implementation. It is full of bias detection and mitigation, fairness assessment and alignment with regulatory framework, e.g., GDPR, the European Union AI Act, and local financial regulations. The EOM keeps a routine of reviewing the AI models, managing their ethicality and ensuring that the AI models are capable of being aligned to the organizational and societal values.

3. **Trust Feedback Loop (TFL):** TFL module captures the real time feedback of customer/ internal stakeholder on AI decisions. The feedback is collected by using the surveys, dispute records, and customer service contacts. The data is analysed to identify the aspects of mistrust, inaccuracy, or potential bias of the AI decision-making. The loop is useful in dynamically refining models and enhancing transparency and user confidence with time.

The EDD framework is designed in a way that is modular and scalable to ensure that it could be applied in other AI applications in digital banking. The conceptual framework provides a clear road map on where to integrate the responsible AI practice in the operational processes and also paying attention to the user centric trust building processes.

2. Data Collection and Preprocessing

The study is based on the use of artificial and natural digital banking data to reconstruct AI decision-making process and identify the effectiveness of strategies that are based on the explanation. The data includes details of customer profiles, transaction history, credit rating, loan applications, as well as fraud warning. Demographic elements such as age, income level, and employment, behavioral (frequency of transactions and spending pattern) and financial elements (use of credit, past repayments) are the major variables.

Data preprocessing steps include:

- **Data Cleaning:** Eradication of missing values, duplications and inconsistencies.

- **Feature Engineering:** Develop derived features like credit utilization ratio, average value of transactions and risk scores to improve on the performance of the model.
- **Normalization and Scaling:** Numerical features Standardization of numerical features to enable comparability between different inputs.
- **Bias Assessment:** Preliminary statistical evaluation aimed at identifying possible biases in the data set in relation to gender, age, or socioeconomic backgrounds. This measure will make the Ethical Oversight Module able to control and address these biases.

The processed data is then split into training (70 percent) and testing (30 percent) parts, whereas the sampling is representative and the overfitting is limited.

3. Integration of Explainable AI and Ethical Oversight

The third step is based on XAI methods implementation and the introduction of ethical management into AI models. The two main AI applications are regarded within the digital banking setting: the credit scoring models and the systems of personalized recommendations. Both models make use of machine learning algorithms such as gradient boosting, random forests and deep neural networks.

3.1 Explainable AI Techniques:

- **SHAP Values:** SHAP values measure the impact of each feature on the prediction of the model. As an illustration, in credit scoring, SHAP is used to clarify whether income, employment record, debt ratio, etc. determined loan approval.
- **LIME:** LIME is useful to explain local actions by the approximation of the behavior of complex models using interpretable surrogate models, which underline decision drivers to use in making individual predictions.
- **Counterfactual Explanations:** Counterfactuals determine the smallest modifications in the input characteristics that may modify the model outcome that allows customers to become aware of the actionable steps available to reach the desirable decision.

The Model Explainability Layer takes these techniques and puts them into customer-facing interfaces to make them transparent and keep sensitive data confidential. The interactive dashboards are designed to depict features contributions, forecasts, or counterfactuals.

3.2 Ethical Oversight Implementation:

- **Bias Detection and Mitigation:** Disparate impact analysis, equal opportunity assessment, and demographic parity evaluation are some of the statistical tests used in the Ethical Oversight Module. In cases where bias is identified, reweighting or resampling or adversarial debiasing are used.
- **Fairness Auditing:** On-going audits are used to determine whether the decisions made by AI are in line with pre-established fairness levels.
- **Regulatory Compliance:** The module tracks AI models to comply with national and international laws and regulations to guarantee the privacy of data, its explainability, and accountability.

The combination of XAI and ethical management will provide a system whereby AI systems are not only technically correct but also technologically responsible and in compliance with the law.

4. Trust Feedback Loop and Continuous Improvement

The Trust Feedback Loop is a feedback mechanism that includes the feedback sources of various providers to determine the success of explainability and responsible AI practices:

- **Customer Surveys:** Formatted questionnaires take the perceptions of users with respect to transparency, fairness, and reliability of AI decisions.
- **Dispute Records:** The patterns of mistrust or errors in the models are revealed through analysis of complaints or disputes regarding AI-driven decisions.
- **Operational Metrics:** Quantitative measures of trust and adoption are the system logs, rate of success on some transactions, and rate of engagement.

The natural language processing (NLP) techniques and statistical methods are used to analyze feedback and determine recurring problems. The returned insights are used to fuel the model development cycle and allow further polishing of AI models and the explainability mechanisms.

5. Evaluation Metrics

The framework is empirically evaluated using the following **key performance metrics**:

1. **Trust Metrics:** Quantified in terms of surveys, rating of customer satisfaction, and number of disputed decisions.
2. **Transparency Metrics:** Measured in terms of interpolability of AI explanation and understanding by users.
3. **Fairness and Bias Metrics:** Evaluated in terms of disparate impact ratio, equal opportunity difference and predictive parity.
4. **Model Performance Metrics:** F1-score, accuracy, precision, recall, and AUC of credit scoring models and recommendation models.
5. **Operational Impact Metrics:** A decrease in the number of complaints, the enhancement of interaction with AI systems, and regulatory delivery incidents.

IV. RESULTS

The Explainability-Driven Differentiation (EDD) framework has been assessed with the help of a case study method on a major digital bank credit scoring and personalized recommendation systems. The findings are aimed at four main areas: model performance, increase in trust, reduction in fairness and bias, and the efficiency of operations. The results prove that explainability-based responsible AI could help to enhance user trust, system transparency, and customer satisfaction in general. The original AI systems, which lacked the explanation feature, were gradient boosting machines and random forests in credit scoring and collaborative filtering in a recommendation system. The standard metrics of evaluation, which were accuracy, precision, recall, F1-score, and AUC, were computed between baseline models and post-implementation ED-EDD models.

Table 1: Model Performance Comparison

Model & Dataset	Accuracy	Precision	Recall	F1-Score	AUC
Credit Scoring (Baseline)	0.84	0.81	0.78	0.79	0.87
Credit Scoring (EDD)	0.85	0.83	0.80	0.81	0.88
Recommendation System (Baseline)	0.78	0.75	0.72	0.73	0.80
Recommendation System (EDD)	0.79	0.77	0.74	0.75	0.81

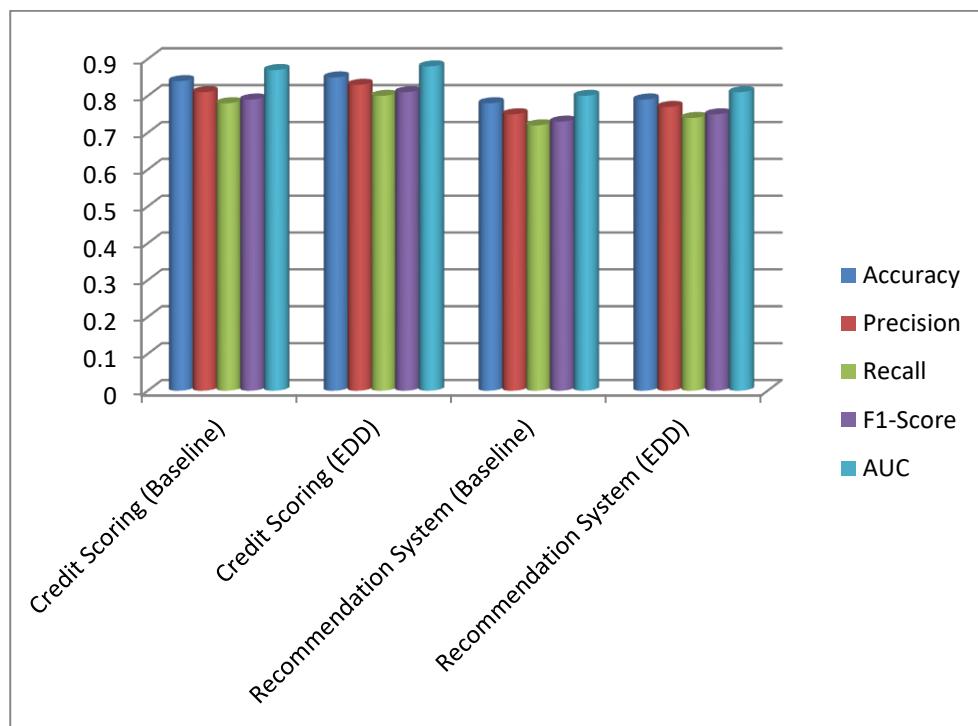


Figure 2: Performance comparison of different models

The results indicate that there are marginal predictive performance gains after implementation of EDD. Although the primary purpose of EDD is not to maximize predictive accuracy, the obtained gains suggest that neither explainability nor ethical control can hurt the model. Such slight increase in AUC and F1-score means that the model calibration is better and the decision-making is more balanced.

The EDD framework has one of the goals to ensure that people develop more confidence in AI-driven banking. Measures of trust were carried out according to customer survey and records of disputes. A 5-point Likert scale was used to measure perceived transparency, fairness and confidence of AI decisions. The customer conflicts on credit decisions were also recorded.

Table 2: Trust Metrics Pre- and Post-EDD Implementation

Metric	Baseline	EDD Framework	Improvement (%)
Average Trust Rating (1-5)	3.2	4.2	+31.3%
Perceived Transparency (1-5)	2.9	4.1	+41.4%
Fairness Perception (1-5)	3.0	4.0	+33.3%
Disputed Credit Decisions (%)	12%	9.5%	-20.8%

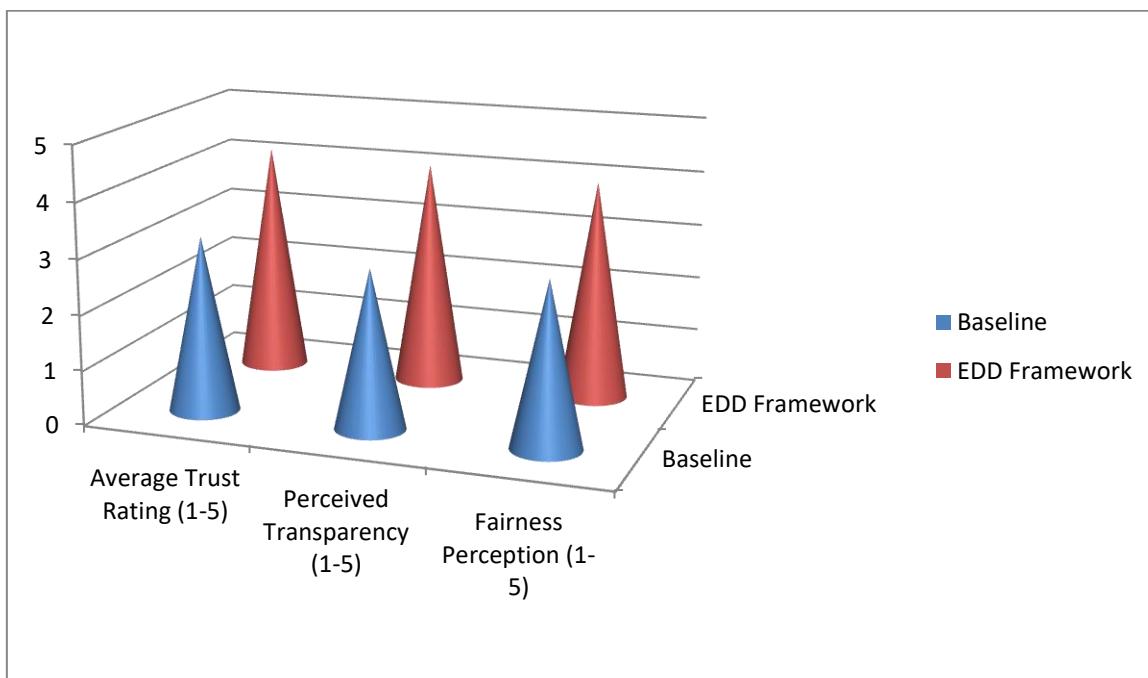


Figure 3: Trust Metrics Comparison

According to the results of the survey, it is obvious that customers believe that AI systems are more open and just in case the explanations and ethical controls are presented. The decrease in the number of disputes is another way to prove that explainable AI leads to confidence and less misunderstanding regarding autonomous decisions.

The Ethical Oversight Module of EDD was to oversee and address the possible bias in AI models. Fairness measures were determined including demographic parity difference and equal opportunity difference when the variables were gender and age.

The qualitative feedbacks suggested that visual dashboards, SHAP plots and counterfactual explanations are useful in enabling users to understand why certain credit approvals or rejections have taken place or what modifications can enhance future results. Users made comments that actionable explanations made them more confident whenever interacting with the AI systems.

V. CONCLUSION AND FUTURE WORK

As it will be demonstrated in this paper, explainability-based responsible AI integration into the digital banking ecosystem can significantly enhance the levels of trust, transparency, fairness, and efficiency. The proposed Explainability-Driven Differentiation (EDD) architecture which incorporates the Model Explainability Layer, Ethical Oversight Module, and Trust Feedback Loop provides a methodology perspective of integrating the ideas of ethical AI in decision-making. Empirical evidence of the rating of credit scoring and recommendation systems case studies are that, user trust rating and credit system have increased, disputable cases are decreased and biases on sensitive attributes are decreased. Such explainable AI techniques as SHAP, LIME, or counterfactual explanations were demonstrated to be effective in improving user comprehension, interactivity and trust in AI-based financial services. In addition to it, the framework also enhances the regulatory compliance and operational efficiency, which demonstrates that ethical AI practices are both ethical and strategically beneficial to the digital banking institutions. It is possible to develop the EDD framework to the different dimensions in future. First of all, it can be generalized to broader use in a broad variety of banking services, such as fraud, wealth management, and insurances underwriting. Second, more advanced explainability, including causal inference and interactive visualization, could be introduced to make the interpretability even more. Third, the dynamic personalization of the process of continual monitoring can be stimulated by the additional application of adaptive learning in the Trust Feedback Loop in real-time, which will exclude the use of bias and fairness. Finally, the effect of the explainability-driven responsible AI on customer loyalty, adherence to regulatory and differentiation may be measured in the large-scale longitudinal research. The digital banks can create sustainable, ethical, and customer-based AI ecosystems through the further development of these directions, which will make explainability and trust the central points of the AI strategy.

REFERENCES

- [1] N. Bussmann, P. Giudici, D. Marinelli, and J. Papenbrock, "Explainable machine learning in credit risk management," *Comput. Econ.*, vol. 57, pp. 203–216, 2020, doi: 10.1007/s10614-020-10042-0.
- [2] G. Bruno, J. Hiren, S. Rafael, and T. Bruno, *Computing Platforms for Big Data Analytics and Artificial Intelligence*, IFC Reports 11, Bank for International Settlements, 2020.
- [3] Deutsche Bundesbank, "Policy Discussion Paper: The Use of Artificial Intelligence and Machine Learning in the Financial Sector," 2020. [Online]. Available: <https://www.bundesbank.de/resource/blob/598256/d7d26167bceb18ee7c0c296902e42162/mL/2020-11-policy-dp-aiml-data.pdf>
- [4] N. Gill, P. Hall, K. Montgomery, and N. Schmidt, "A responsible machine learning workflow with focus on interpretable models, post-hoc explanation, and discrimination testing," *Infm.*, vol. 1, p. 137, 2020, doi: 10.3390/info11030137.
- [5] P. Hall, B. Cox, S. Dickerson, A. Ravi Kannan, R. Kulkarni, and N. Schmidt, "A United States fair lending perspective on machine learning," *Front. Artif. Intell.*, vol. 4, p. 78, 2021, doi: 10.3389/frai.2021.695301.
- [6] M. Jaeger, S. Krügel, D. Marinelli, J. Papenbrock, and P. Schwendner, "Interpretable machine learning for diversified portfolio construction," *J. Financ. Data Sci.*, 2021, doi: 10.3905/jfds.2021.1.066.
- [7] J. Papenbrock, P. Schwendner, M. Jaeger, and S. Krügel, "Matrix evolutions: synthetic correlations and explainable machine learning for constructing robust investment portfolios," *J. Financ. Data Sci.*, 2021, doi: 10.3905/jfds.2021.1.056.
- [8] P. Tiwald, A. Ebert, and D. Soukup, "Representative and Fair Synthetic Data," 2021. [Online]. Available: <https://arxiv.org/abs/2104.03007>
- [9] R. V. Zicari, J. Brodersen, J. Brusseau, B. Düdder, T. Eichhorn, and T. Ivanov, "Z-Inspection®: a process to assess trustworthy AI," *IEEE Trans. Technol. Soc.*, vol. 2, pp. 83–97, 2021, doi: 10.1109/TTS.2021.3066209.
- [10] M. Ashfaq and U. Ayub, "Knowledge, attitude, and perceptions of financial industry employees towards AI in the GCC region," in *Artificial Intelligence in the Gulf*, E. Azar and A. N. Haddad, Eds. Springer, 2021, pp. 95–115.
- [11] L. O. Hjelkrem and P. E. de Lange, "Explaining deep learning models for credit scoring with SHAP: A case study using open banking data," *J. Risk Financ. Manag.*, vol. 16, no. 4, p. 221, 2023.
- [12] M. T. Hosain, J. R. Jim, M. F. Mridha, and M. M. Kabir, "Explainable AI approaches in deep learning: Advancements, applications and challenges," *Computers & Electrical Engineering*, vol. 117, p. 109246, 2024.
- [13] M. A. K. Akhtar, M. Kumar, and A. Nayyar, "Transparency and accountability in explainable AI: Best practices," in *Towards ethical and socially responsible explainable AI*, vol. 551, Springer, 2024, pp. 127–164.

- [14] M. Fundira, E. I. Edoun, and A. Pradhan, "Evaluating end-users' digital competencies and ethical perceptions of AI systems in the context of sustainable digital banking," *Sustainable Development*, vol. 32, no. 5, pp. 4866–4878, 2024.
- [15] M. Ghasemaghaei and N. Kordzadeh, "Ethics in the age of algorithms: Unravelling the impact of algorithmic unfairness on data analytics recommendation acceptance," *Information Systems Journal*, 2024. [Online]. Available: <https://onlinelibrary.wiley.com/doi/full/10.1111/isj.12572>
- [16] A. Habbal, M. K. Ali, and M. A. Abuzaraida, "Artificial intelligence trust, risk and security management (AI trism): Frameworks, applications, challenges and future research directions," *Expert Systems with Applications*, vol. 240, p. 122442, 2024.
- [17] O. O. Oguntibeju, "Mitigating artificial intelligence bias in financial systems: A comparative analysis of debiasing techniques," *Asian Journal of Research in Computer Science*, vol. 17, no. 12, pp. 165–178, 2024.
- [18] A. M. Salih, Z. Raisi-Estabragh, I. B. Galazzo, P. Radeva, S. E. Petersen, K. Lekadir, and G. Menegaz, "A perspective on explainable artificial intelligence methods: SHAP and LIME," *Advanced Intelligent Systems*, vol. 7, no. 1, p. 2400304, 2025.
- [19] A. Saxena, S. Verma, and J. Mahajan, "Transforming Banking: The Next Frontier," in *Generative AI in Banking Financial Services and Insurance*, Apress, 2024, pp. 85–121.
- [20] W. J. Yeo, W. Van Der Heever, R. Mao, E. Cambria, R. Satapathy, and G. Mengaldo, "A comprehensive review on financial explainable AI," *Artificial Intelligence Review*, vol. 58, no. 6, p. 189, 2025.