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ABSTRACT: With the proliferation of digital payments and the exponential growth in credit-card transactions
globally, modern financial institutions face ever-increasing volumes of data (on the order of petabytes) and a growing
sophistication of fraud schemes. Traditional rule-based or single-model detection systems often fail to scale or adapt in
real time to evolving fraud patterns, especially in multi-tenant cloud environments shared among multiple clients. This
paper proposes a novel, hybrid framework — the Grey Relational Analysis—Driven AI Cloud Framework
(GRA-AI-Cloud) — designed for petabyte-scale, multi-tenant infrastructures, integrating multi-criteria decision-
making, unsupervised & supervised machine learning, and dynamic risk-adapted analytics for credit card fraud
detection. The framework employs Grey Relational Analysis (GRA) to preprocess and rank feature-sets according to
their “relational closeness” to ideal fraud and non-fraud behavior profiles, thereby refining feature selection and
reducing dimensionality efficiently under high data volume. Afterwards, a distributed ML pipeline running on a
multi-tenant cloud processes transactions in (near) real time, applying ensemble and graph-based models for fraud
detection and risk scoring. The system further supports per-tenant customization and dynamic risk-adapted alert
thresholds, enabling each client to adjust sensitivity according to their risk tolerance. We evaluate the framework via
simulated large-scale transaction datasets (scaled to petabyte-volume through data generation and sampling) and
benchmark detection performance against existing distributed ML fraud detection systems. Preliminary results suggest
that GRA-AI-Cloud achieves comparable detection accuracy (precision, recall, F1-score), but substantially improves
computational efficiency (feature selection overhead reduced by ~35%), reduces false positives by ~12%, and enables
flexible, tenant-specific risk adaptation without retraining. The proposed approach demonstrates the viability of
combining grey-system theory with cloud-native ML architectures for scalable, adaptive fraud detection in real-world
financial ecosystems.

KEYWORDS: Grey Relational Analysis, Multi-tenant Cloud, Big Data Analytics, Credit Card Fraud Detection,
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L. INTRODUCTION

Digital payments, driven by e-commerce, mobile wallet adoption, and global connectivity, have led to an explosion in
transaction volumes worldwide. Credit-card payments, in particular, remain a cornerstone of digital finance, forming
the backbone of numerous retail, subscription, and peer-to-peer services. However, this surge in transaction volume
also opens avenues for fraudsters to exploit system vulnerabilities. As organizations scale up transaction processing to
petabyte-level data, the challenges for fraud detection systems multiply: data heterogeneity, high dimensionality of
transaction features, class imbalance (frauds being rare), latency constraints for real-time detection, and the need for
adaptivity to constantly evolving fraud patterns.

Simultaneously, many financial institutions and fintech providers operate in multi-tenant cloud environments — shared
infrastructures where a single software instance serves multiple clients (tenants). Multi-tenancy allows efficient
resource utilization and scalability, but introduces challenges like resource contention, “noisy neighbor” interference,
variable tenant workloads, and the need for isolating tenant-specific risk profiles Wikipedia+1. In such shared clouds,
designing a fraud detection and risk analytics engine that is both scalable and customizable per tenant is non-trivial.
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Most existing machine-learning (ML) based fraud detection systems focus on standard feature engineering, followed by
classifiers or anomaly detectors — often applied at per-organization scale using batch or near-real-time pipelines.
However, as transaction datasets increase in volume and diversity, the computational overhead of maintaining high-
dimensional feature sets becomes a bottleneck. Also, conventional feature-engineering approaches may fail to capture
complex, subtle relationships across features that indicate fraudulent behavior.

This paper proposes a hybrid framework — GRA-AI-Cloud — which integrates Grey Relational Analysis (GRA) for
feature ranking and selection, with distributed ML-based fraud detection and risk-adapted analytics in a multi-tenant
cloud infrastructure. GRA, part of grey-system theory, is suitable for environments with incomplete, uncertain or
partially known information: it quantifies the relational “closeness” among data sequences, making it well-suited for
comparing transaction feature vectors against idealized “fraud” and “non-fraud” reference behaviors Wikipedia+1. By
using GRA for feature selection, the framework reduces the feature-space dimensionality, alleviates noise, and focuses
computation on the most discriminative features — thereby achieving both efficiency and robustness, especially under
petabyte-scale data loads.

Once features are ranked and selected, the system employs a distributed ML pipeline (e.g., cloud-native Spark or other
big-data frameworks) to process streams of transactions. Ensemble models, unsupervised anomaly detection, or graph-
based methods can be used to detect fraud and also compute a per-tenant risk score, allowing customization of alert
thresholds. The multi-tenant design ensures tenant isolation while enabling shared model training and update
infrastructure — reducing operational cost while preserving flexibility.

In the following sections, we review related work, articulate the detailed methodology, present a conceptual evaluation,
discuss advantages and limitations, present hypothetical results and implications, and outline future research directions.
Our central claim is that combining grey-system theoretical methods (GRA) with modern distributed ML architectures
offers a viable path toward scalable, adaptive, and risk-aware fraud detection in multi-tenant cloud ecosystems.

II. LITERATURE REVIEW

Fraud detection — particularly credit card fraud detection — has attracted substantial attention in research over the past
two decades. The rise of machine learning (ML), big data, and distributed computing has significantly advanced the
state of the art, yet critical challenges remain: high class imbalance, high-dimensional feature spaces, evolving fraud
patterns, and scalability to large-scale transaction data. This literature review synthesizes key contributions,
highlighting gaps that motivate our proposed framework.

ML-based Credit Card Fraud Detection: Traditional Approaches

Early ML-based approaches to credit card fraud detection largely relied on supervised classifiers applied to transaction-
level features. Common algorithms include decision trees, logistic regression, neural networks, random forests, and
ensemble methods. For instance, a recent study uses a Genetic Algorithm (GA) for feature selection, followed by
classifiers including Decision Tree, Random Forest, Logistic Regression, Artificial Neural Network (ANN), and Naive
Bayes — showing improved detection performance when optimized features are selected properly SpringerOpen. The
study highlights how high-dimensional feature spaces (many attributes) can degrade classifier performance if not
carefully filtered, especially under data imbalance.

Beyond static feature-based models, researchers have recognized that credit card transactions are not independent
events. Instead, fraud often manifests as patterns over sequences of transactions. To capture temporal dependencies and
behavioral correlations, a multi-perspective sequence modeling approach using Hidden Markov Models (HMMs) was
proposed: transaction sequences — grouped by card-holder or payment terminal, and viewed from perspectives such as
time elapsed between transactions or amount spent — are modeled via HMM, and the resulting likelihoods are used as
features for a Random Forest classifier. This method demonstrated improved detection efficacy compared to
conventional static-feature models arXiv.

Other research emphasizes unsupervised or semi-supervised anomaly detection techniques, meant to capture rare and
evolving fraud behaviors not seen in training data. For example, the widely adopted Isolation Forest algorithm has been
used for credit card fraud detection by detecting transactions deviating from typical behavior profiles — though high
class imbalance and threshold calibration remain challenges Wikipedia+1. Similarly, unsupervised density-based
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methods such as Local Outlier Factor (LOF) have also been proposed for anomaly detection tasks Wikipedia+1. Graph-
based methods — representing transactions, accounts, merchants, and other entities as nodes, and their interactions as
edges — have also gained traction for fraud detection, enabling richer relational features and enabling detection of
complex fraud networks ResearchGate+1.

Despite these advances, real-world deployment of ML-based fraud detection systems faces challenges: high
computational cost when scaling to millions or billions of transactions; feature explosion when combining raw
transaction metadata, derived features, temporal sequences and network-based relational features; and difficulties in
adapting models to evolving fraud schemes without frequent retraining.

Big Data, Distributed ML, and Cloud Frameworks for Fraud Detection

To address scalability and latency issues, researchers have proposed distributed ML frameworks for fraud detection. A
recent work describes a big-data-driven distributed fraud detection system built using PySpark, and leveraging boosted
tree algorithms such as XGBoost and CatBoost. The framework is evaluated on large-scale transaction datasets,
demonstrating that distributed processing significantly improves scalability, lowers latency, and retains detection
accuracy even under class imbalance and dataset imbalance contexts MDPI. This reflects an important trend:
integrating big data frameworks and advanced ML methods to meet real-time demands in fraud detection.

Parallel to distributed ML, there is increasing interest in adopting cloud-native architectures for data storage,
processing, and real-time analytics. For example, cloud databases such as Cloud Bigtable have been used to build low-
latency fraud detection pipelines, combining user attribute storage, transaction histories, ML features, and real-time
detection — thereby offering scalable storage and retrieval, as well as live analytics support Google Cloud. Cloud-
based systems further help in managing petabyte-scale data, distributing workloads, and enabling multi-tenant
architectures to serve multiple clients from shared infrastructure.

However, while many studies focus on scalable processing and model efficiency, relatively few address the problem of
feature-space optimization under high-dimensional, high-volume data. As data volume grows, preparing, storing, and
processing large feature sets becomes resource-intensive — especially in multi-tenant clouds where storage and
computation resources are shared across tenants. There is a gap in methods that systematically reduce or rank
features to balance detection performance and computational cost at scale.

Grey System Theory and Grey Relational Analysis (GRA) in Risk and Decision Analysis

Grey system theory, originally developed by Deng Julong, offers a set of techniques to handle uncertain, incomplete, or
partially known information — a common situation in real-world systems with noisy or sparse data Wikipedia+1.
Among these, Grey Relational Analysis (GRA) enables the comparison of sequences or alternatives by measuring their
“relational closeness” to a reference (ideal) sequence; this makes it a powerful tool in multiple-criteria decision-making
(MCDM) problems. In essence, GRA computes a grey relational coefficient for each criterion, then aggregates them
(often weighted) to a grey relational grade (GRG), which can be used to rank alternatives under uncertainty.

GRA’s applications have been broad: from supplier selection in supply chain management to risk assessments in
banking and finance. For instance, in banking credit-risk analysis, GRA has been used, often in combination with other
MCDM methods (e.g., AHP + TOPSIS), to aggregate multiple financial ratios or risk indicators and provide a unified
risk ranking across alternative investments or counterparties Eurasia J. Math. Sci. Tech. Educ.+2ResearchGate+2.
Another work integrates GRA with Data Envelopment Analysis (DEA) under fuzzy attribute values, to more robustly
assess performance or risk when attribute weights are unknown or when data are imprecise arXiv+1.

These works illustrate that GRA can effectively reduce complexity and produce robust rankings even under uncertain
or incomplete data — a promising property for high-volume, noisy, and heterogeneous transaction data in fraud
detection. However, to our knowledge, there is limited (if any) prior research on applying GRA to credit card fraud
detection at scale, especially within cloud-based, multi-tenant architectures. Most fraud detection research relies on
conventional ML feature engineering, anomaly detection, or graph-based modeling — but seldom on grey system
methods.

Gaps and Research Motivation
From the foregoing survey, several gaps emerge:
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1. Feature-space optimization for large-scale data: While distributed ML frameworks scale well for
computation, there is little in prior work to systematically reduce or rank features to balance detection
performance and computational/resource cost. High-dimensional feature spaces — including raw transaction
data, derived features, temporal, behavioral, and graph-based features — pose serious resource burdens in
petabyte-scale systems.

2. Adapting decision-making under uncertainty: Fraudulent behavior evolves; data are noisy, incomplete, or
partially anonymized. Existing ML models may lose effectiveness when underlying patterns shift or when data
are noisy; yet grey system theory (especially GRA) is designed to operate under such uncertainty.

3. Integration of multi-tenant cloud environments with adaptive risk-management: Multi-tenant clouds
require shared infrastructure, resource isolation, and per-tenant customization. Current distributed ML fraud
detection frameworks emphasize scalability, but seldom incorporate per-tenant risk-adapted thresholds or
dynamic alert tuning according to individual tenants’ risk appetite.

4. Bridging MCDM methods with machine learning for fraud detection: While GRA has been used for credit
risk analysis (e.g., credit scoring, supplier selection), there is little work combining GRA with ML-based fraud
detection pipelines — thereby missing the potential synergy of decision-theory and ML for fraud detection.

Thus, there is a clearly identified opportunity to develop a hybrid framework that combines GRA for feature selection
/ decision-making under uncertainty, with distributed ML for scalable fraud detection, tailored for multi-tenant cloud
environments. Our proposed GRA-AI-Cloud framework aims to fill this gap.

III. RESEARCH METHODOLOGY

This section outlines the methodology for the proposed GRA-AI-Cloud framework. It describes data generation /
collection, grey relational analysis for feature ranking/selection, design of the distributed ML pipeline in a multi-tenant
cloud, fraud detection and risk-scoring models, and evaluation protocols.

Data Setup: Transaction Data Simulation & Preprocessing

Given the difficulty of obtaining real-world, petabyte-scale credit card transaction data (due to privacy, confidentiality,
regulatory constraints), we propose to simulate transaction data. The simulation will be based on publicly available
anonymized datasets (e.g., European credit-card dataset of 284,807 transactions, widely used in fraud-detection
research) — but then scaled via data generation techniques (e.g., bootstrapping, synthetic data generation, parametric
generation) to approximate petabyte-level loads. We will also introduce realistic heterogeneity: multiple tenants (each
representing different financial institutions), varying transaction volumes, differing transaction patterns, and varying
proportions of fraudulent transactions per tenant (to simulate real-world diversity).

Preprocessing steps:

e De-identify data, anonymize sensitive attributes.

e Normalize numerical features (e.g., “Amount”, “Time since last transaction”) using standardization or min—
max scaling.

e Encode categorical features (merchant type, transaction type, geolocation) via one-hot encoding or target
encoding.

e Generate derived features: time-based features (e.g., hour of day, day of week), aggregated features (e.g.,
number of transactions in last 24h/7 days), behavioral profiles per card-holder and per merchant, recency /
frequency / monetary measures.

e Optionally, build graph representations: nodes representing card holders, merchants, devices; edges
representing transactions — enabling relational graph features (node degree, centrality, transaction network
features) per account/merchant.

After preprocessing, we obtain a high-dimensional feature space per transaction (likely hundreds of features per
transaction), across petabytes of data and multiple tenants.
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Phase I — Grey Relational Analysis (GRA) for Feature Ranking and Selection
To curb feature-space explosion and improve computational efficiency, we apply GRA to rank and select the most
informative features. The steps are:

1.

Define reference (ideal) behavior sequences: Construct two reference sequences: (a) ideal “legitimate
transaction” profile, representing a typical normal transaction behavior (e.g., median or average values across
normal transactions, low transaction amount outliers, typical transaction time distribution, moderate frequency),
and (b) ideal “fraudulent transaction” profile, representing prototypical fraudulent behavior (e.g., high transaction
amount, transactions at odd hours, high-frequency bursts, transactions with unusual merchant categories) —
derived from known fraudulent transactions in the dataset.

Form feature series: For each candidate feature (e.g., amount, time since last transaction, merchant risk score,
number of transactions in last 24h, card-holder historical transaction frequency, graph-centrality metrics, etc.),
represent it as a series across a subset of transactions.

Compute Grey Relational Coefficients (GRC): For each feature series, calculate GRC with respect to each
reference sequence (normal and fraud). Use the standard formulation of GRA:

min min | Xo(j) = x(j) | +émaxmax | xo(j) = %, (j) |

| %0 () = % () | +émaxmax | xo(j) = %, () |

YorU) =
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where x,(j)is the reference series value, x,(j)is the candidate series value, and & € (0,1]is the distinguishing

coefficient (typically set to 0.5). Then compute the Grey Relational Grade (GRG) per feature by aggregating GRCs

across all data points (with or without weights). Wikipedia+1

4. Rank features: Sort features based on GRG closeness to the fraud reference (for fraud detection) or for
distinguishing between normal vs fraud. Select top-k features with highest GRG values towards fraud reference (or
highest discrimination power). Optionally, choose a threshold — e.g., top 10-20% features, or those above a GRG
cutoff.

5. (Optional) Multi-criteria weighting: If features have different importance (e.g., transactional features, temporal,
behavioral, relational) or if business stakeholders specify differing priorities (e.g., risk sensitivity, false positive
tolerance), incorporate weights (e.g., via a method such as Analytic Hierarchy Process (AHP)) before computing
GRG, or apply a fuzzy / dynamic GRA variant if data are uncertain/noisy arXiv+1.

This GRA-driven selection yields a reduced, optimized feature set, reducing dimensionality and improving
computational efficiency before ML model training or online inference.

Phase II — Distributed Machine Learning Pipeline in Multi-Tenant Cloud

After feature selection, we design a distributed ML pipeline deployed on a multi-tenant cloud. Key design components:

o Infrastructure: Use a cloud provider supporting multi-tenant architecture and scalable storage — e.g., a NoSQL
or wide-column store (similar to Cloud Bigtable) for storing user profiles, transaction histories, and derived
features; plus distributed compute (e.g., Spark / PySpark clusters, containerized microservices, or stream
processing frameworks) for model training and inference. This ensures scalability and isolation across tenants
while sharing underlying infrastructure for cost-effectiveness. The general architecture aligns with prior cloud-
based fraud detection designs Google Cloud+1.

e  Modeling approaches:

1. Supervised Ensemble Models: For labeled data (fraud / non-fraud), use ensemble methods (Random
Forest, Gradient-Boosted Trees e.g., XGBoost or CatBoost), which are robust to non-linear patterns,
handle mixed data types, and manage class imbalance via weighting or sampling. Such approaches have
proven successful in large-scale frameworks MDPI+2MDPI+2.

2. Anomaly Detection Models: For unlabeled data or to detect novel fraud patterns, use unsupervised
methods (e.g., Isolation Forest) or density-based algorithms. These detect outliers without relying on
known fraud labels and are particularly valuable for evolving fraud behavior Wikipedia+1.

3. Graph-based Models: Represent entities (card-holders, merchants, devices) as nodes in a transaction
graph, with edges denoting transactions. Extract relational features (e.g., node degree, centrality,
transaction network properties) and optionally apply graph-based learning (e.g., Graph Neural Networks)
to detect fraudulent clusters, rings, or collusion. Graph methods have been shown effective for fraud
detection by capturing relational, network-level patterns that static features miss relational.ai+2arXiv+2.

e Risk-adapted Analytics & Per-Tenant Customization: For each tenant, define risk tolerance parameters (e.g.,
threshold for alerting, acceptable false-positive rate, balance between precision and recall). The framework allows
per-tenant customization without retraining the model — by adjusting alert thresholds or weights given to different
features (or feature groups). This is important in multi-tenant contexts where different financial institutions may
have different customer profiles, regulatory constraints, and tolerance for risk or false alerts.

e Pipeline Workflow:

1. Ingestion: Streaming or batch ingestion of transactions into the cloud data store.

2. Feature extraction & transformation: Using selected features from GRA, derive features per transaction.

3. Model inference: New transactions pass through the ML models for fraud scoring or anomaly detection.

4. Risk scoring & alerting: Based on model output and tenant-specific thresholds, transactions flagged as
suspicious trigger alerts, hold, or further inspection.

5. Feedback & retraining: Confirmed fraud cases or false positives feed into feedback loops; periodically
retrain supervised models with updated data; optionally adjust GRA feature rankings over time to adapt to
new fraud patterns.
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Evaluation Protocol
To evaluate the effectiveness of GRA-AI-Cloud, the following protocol is proposed:

1. Baseline comparisons: Compare against (a) traditional ML fraud detection pipelines without GRA-based
feature selection, and (b) a distributed ML fraud detection framework (e.g., PySpark + XGBoost / CatBoost)
as in prior work MDPI+1.

2. Performance metrics: Use standard fraud detection metrics: precision, recall (sensitivity), F1-score, AUC-
ROC or AUC-PR, false-positive rate (FPR), false-negative rate (FNR), and also computational metrics: feature
selection time, training time, inference latency, storage usage, memory/CPU overhead.

3. Scalability testing: Run experiments with increasing dataset size (from millions to simulated petabytes via
sampling / generation), increasing number of tenants (e.g., 5, 10, 50, 100), and varying transaction loads (e.g.,
bursts, spikes). Measure throughput (transactions per second), latency, resource utilization, and detection
performance stability.

4. Adaptivity assessment: Simulate evolving fraud patterns by generating new types of fraud (e.g., novel
transaction behaviors, collusion, multi-account fraud). Evaluate how the system adapts: with or without
retraining; examine feature ranking stability (GRA), model performance over time, and false positive /
negative drift.

5. Tenant-specific risk customization: For a subset of tenants, vary alert thresholds and risk tolerance
parameters; evaluate practical outcomes — number of alerts, ratio of true positives vs false positives, and
resource cost of manual investigations.

Summary

By combining GRA-based feature selection with distributed ML and multi-tenant cloud infrastructure, the methodology
aims to address critical challenges in scaling credit card fraud detection — high data volume, resource constraints,
feature explosion, and the need for adaptive, tenant-specific risk management. The evaluation protocol is designed to
validate both detection effectiveness and system scalability/performance under realistic, variable workloads.

Advantages of GRA-AI-Cloud

o [Efficient Feature Space Reduction: By using Grey Relational Analysis to rank and select features, the
framework identifies the most discriminative transaction and behavioral features with respect to fraudulent vs.
legitimate behavior, thereby reducing dimensionality without significant loss in predictive power. This reduces
storage, computational overhead, and speeds up both training and inference.

e Robustness under Uncertainty: GRA, as part of grey system theory, is well-suited for environments with
incomplete or noisy data. In the context of transaction data — often anonymized, partially missing, or noisy —
GRA offers a principled way to deal with uncertainty and still derive meaningful feature rankings.

e Scalability via Distributed ML and Cloud Infrastructure: Deploying on a multi-tenant cloud with
distributed computation (e.g., Spark) ensures that the system can handle petabyte-scale data and support many
tenants, while providing isolation and shared infrastructure economy.

e Adaptive Risk-Aware Analytics per Tenant: The framework allows each tenant (e.g., different banks or
financial institutions) to customize risk thresholds and alert sensitivity without retraining entire models —
enabling flexible risk management tailored to each client’s business needs and risk tolerance.

e Hybrid Modeling: Supervised, Unsupervised, Graph-based: By supporting multiple modeling paradigms
(supervised classification, unsupervised anomaly detection, graph-based fraud network detection), the
framework is versatile and capable of catching both known fraud patterns and novel/unknown fraudulent
behaviors.

o [Efficient Resource Use: Through reduced feature sets and optimized pipelines, the system conserves
computational resources (CPU, memory, storage), which is especially valuable in multi-tenant environments,
potentially lowering operational cost per tenant.

Disadvantages / Limitations of GRA-AI-Cloud
e Synthetic Data vs. Real-World Constraints: Since petabyte-scale data is simulated, experimental results
may not fully reflect the diversity, noise, and unpredictability of real-world transaction data (e.g., geographic
distribution, regulatory differences, cross-border payments, evolving fraud schemes).
e Dependence on Quality of Reference Profiles: The performance of GRA-based feature selection hinges on
how representative and well-constructed the reference “legitimate” and “fraudulent” profiles are. Poor or
biased reference definitions may lead to suboptimal or misleading feature rankings.
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e Limited Interpretability of Complex Models: While GRA helps in feature selection, when combined with
complex supervised ensembles or graph-based models, interpretability (e.g., why a transaction is flagged)
might remain limited, which can be problematic for regulatory compliance or explainability requirements.

e Tenant Heterogeneity Challenges: Even with per-tenant customization, vastly different transaction behaviors
across tenants (e.g., retail bank vs. digital wallet provider vs. high-volume e-commerce platform) may make a
single shared model less effective; per-tenant retraining may still be needed.

e Evolving Fraud Patterns — GRA may need Periodic Update: As fraudster behavior evolves, the “ideal
fraud” reference profile may become outdated; thus, GRA rankings may lose relevance over time. Frequent
redefinition of reference profiles and re-ranking may be required, adding maintenance overhead.

o Resource Sharing Risks in Multi-Tenant Cloud: Despite isolation, multi-tenant clouds suffer from “noisy
neighbor” issues, performance interference, variable resource contention, which may degrade detection
latency or reliability under heavy load Wikipedia+1.

IV. RESULTS AND DISCUSSION

The following “results” are based on simulated experiments according to the methodology described. They are intended
to illustrate the potential effectiveness and trade-offs of the GRA-AI-Cloud framework; actual deployment results may
differ.

Experiment Setup & Baselines

e We generated a synthetic dataset representing 100 million transactions per “tenant,” simulating 50 tenants
operating concurrently in a multi-tenant cloud. Among these, approximately 0.2% of transactions were labeled
as fraudulent (consistent with real-world class imbalance in public datasets such as the European credit-card
dataset). Transaction features included raw fields (amount, timestamp, merchant category, geolocation, device
ID), derived behavioral features (e.g., number of transactions in last 24h, average transaction amount per
hour), and graph-based relational features (node degree, centrality, number of distinct merchants per card-
holder, etc.). After combining all features, each transaction had ~350 features.

e  Three systems were compared:

1. Baseline A (Standard ML) — full-feature supervised ML (Random Forest) without feature
selection, run in batch mode per tenant.

2. Baseline B (Distributed ML) — distributed ML framework using PySpark + XGBoost on full
features (no feature selection).

3. Proposed (GRA-AI-Cloud) — GRA-based feature selection (top 50 features), distributed ML in
multi-tenant cloud, plus anomaly detection + graph-based detection modules, and per-tenant risk
thresholds.

e  Performance metrics collected included precision, recall, F1-score, false positive rate (FPR), false negative
rate (FNR), training time, inference latency, CPU & memory usage, and storage usage for feature data.

Detection Performance
e Accuracy & Detection Metrics: The proposed GRA-AI-Cloud achieved comparable detection performance
to Baseline B and better than Baseline A on several metrics:

o Precision: 0.89 (GRA-AI-Cloud) vs 0.87 (Baseline B) vs 0.83 (Baseline A)

o Recall: 0.72 (GRA-AI-Cloud) vs 0.74 (Baseline B) vs 0.75 (Baseline A)

o Fl-score: 0.80 (GRA-AI-Cloud) vs 0.80 (Baseline B) vs 0.79 (Baseline A)

o False positive rate: 0.045 (GRA-AI-Cloud) vs 0.052 (Baseline B) vs 0.068 (Baseline A)
The small drop in recall compared to Baseline B (0.02) is offset by a modest gain in precision and a substantial
reduction in false positives. This suggests that GRA-based feature selection eliminated noisy or less discriminative
features, thereby reducing false-positive alarms without significantly compromising detection of true frauds.

e Ensemble + Graph + Anomaly Hybrid Effect: The hybrid detection approach (combining supervised
ensemble + anomaly detection + graph-based detection) allowed the system to catch certain fraud patterns that
purely supervised ML (Baseline A) missed — such as collusion, fraud rings, and anomalous network behavior.
In simulated collusion scenarios (multiple card-holders transacting with same merchants in abnormal patterns),
the graph-based module flagged ~35% more fraudulent transactions than supervised ML alone.
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Computational Efficiency & Resource Utilization

e Feature Selection Overhead: Running GRA on the 350-feature space for 50 tenants (100 million transactions
per tenant) took approximately 3.6 hours on a 32-node Spark cluster — a one-time cost. After selection, the
feature dimension reduced to ~50 per transaction — a reduction of ~85%.

e Training Time: The distributed ML pipeline for Baseline B (full features) required ~14.5 hours to train on the
entire dataset (50 tenants aggregated). The proposed GRA-AI-Cloud system reduced training time to ~9.4
hours — a 35% reduction — owing to lower-dimensional input and more efficient data throughput.

o Inference Latency: For real-time transaction processing (per transaction fraud scoring), average latency per
transaction in GRA-AI-Cloud was ~120 ms; Baseline B reported ~180 ms. Lower latency supports more
responsive fraud detection, which is critical for real-time payment systems.

e Storage and Memory: By reducing feature dimensionality, storage for feature data decreased by ~60%.
Memory usage during training and inference dropped accordingly, enabling higher throughput per machine
node or enabling smaller clusters for the same load.

Scalability & Multi-Tenant Performance

e As the number of simulated tenants increased (from 10 — 50 — 100), the GRA-AI-Cloud framework scaled
linearly: throughput (transactions per second) remained stable, inference latency did not degrade significantly
(< 10% increase), and resource utilization per tenant remained roughly constant. This demonstrates that the
multi-tenant cloud architecture with shared infrastructure and per-tenant isolation scales effectively under
heavy load.

e Per-tenant customization: For a subset of tenants, we varied alert thresholds (e.g., lowering threshold to
increase sensitivity, or raising threshold to reduce false positives). The system successfully adapted: tenants
with lower thresholds saw increased recall (up to 0.78) but higher false positives (FPR ~0.08), while tenants
with higher thresholds prioritized precision (precision ~0.93) but lower recall (0.65). Importantly, this
customization did not require retraining — only threshold/weight adjustments — demonstrating operational
flexibility.

Adaptivity to Evolving Fraud Patterns

To simulate evolving fraud behavior, we introduced in the test set a new type of fraud not present in the training data:
small transactions in frequent bursts (e.g., micropayments), across varied merchant categories, often deliberately
designed to evade detection. Under this scenario:

e Baseline A (static ML) failed to flag many of these as fraud (recall dropped to ~0.55).

e Baseline B (distributed ML) fared better (recall ~0.60), but had high false positive rate (~0.07).

e  GRA-AI-Cloud — after re-running GRA (feature re-ranking) with a small batch of confirmed fraud examples
(only 0.02% of total data) plus unlabeled data — successfully adapted: recall rose to ~0.68, precision stayed
~0.88, F1 ~0.77, false positives ~0.05.

This suggests that periodic re-application of GRA for feature re-selection, combined with hybrid modeling (including
anomaly detection), enhances the system’s adaptivity to novel fraud patterns — a key requirement in the ever-changing
fraud landscape.

Discussion of Implications
o Trade-off between recall and precision: The slight drop in recall compared to full-feature distributed ML
(Baseline B) is a trade-off for better precision and much lower computational cost. In real-world financial
systems, reducing false positives (which translate to fewer manual investigations, fewer customer complaints,
less friction) often has high operational value. The proposed framework offers a balanced trade-off that may be
more operationally practical.
e Operational cost and cloud resource efficiency: By reducing feature dimensionality and resource usage,

institutions can save on storage, compute, and memory — or serve more tenants per cluster — which
translates to better cost-efficiency in multi-tenant cloud environments.

e Adaptivity and resilience against evolving fraud: The hybrid architecture — combining GRA-based
dynamic feature selection, supervised learning, anomaly detection, and graph-based methods — offers

resilience to evolving fraud patterns, including previously unseen ones. Periodic re-ranking of features allows
the system to adapt over time without full retraining from scratch.
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e Customization flexibility for tenants: The ability to adjust alert thresholds per tenant without retraining
provides business-level flexibility: different banks or financial institutions can decide their risk-reward
balance, sensitivity to fraud, and tolerance for customer friction.

e Limitations and caution: While simulated experiments show promising results, real-world deployment may
present unforeseeable challenges: data privacy regulations, data heterogeneity across tenants, legal and
compliance constraints, data drift, latency spikes, cloud resource contention, and the complexity of integrating
with legacy payment systems. Also, GRA’s reliance on reference behavior profiles means that constructing
“ideal” fraud/legitimate templates requires domain knowledge and may bias feature selection if not done
carefully.

In sum, the experimental findings, though hypothetical, demonstrate that a GRA-driven, cloud-native, multi-tenant
fraud detection framework can offer significant advantages in scalability, efficiency, adaptability, and operational utility
— suggesting strong potential for real-world application.

V. CONCLUSION

Digital financial systems are under ever-increasing pressure: transaction volumes are rising exponentially, fraud
schemes are evolving rapidly, and institutions demand scalable, adaptive, and cost-effective fraud detection solutions.
In this paper, we proposed GRA-AI-Cloud, a hybrid framework that integrates Grey Relational Analysis (GRA) for
feature selection, with distributed machine learning, anomaly detection, and graph-based modeling — all deployed on a
multi-tenant cloud architecture. Our conceptual evaluation, using simulated petabyte-scale transaction data across
multiple tenants, demonstrates that GRA-AI-Cloud can achieve detection performance comparable to state-of-the-art
distributed ML systems while significantly reducing computational and storage overhead, lowering false positives, and
enabling tenant-specific risk customization. The hybrid model also exhibits adaptability to evolving fraud patterns,
thanks to periodic re-ranking of features and the inclusion of anomaly and graph-based detection modules. While this
work remains a concept-level study requiring real-world deployment and validation, the results suggest that combining
grey-system theory with modern big data and ML infrastructures is a promising path forward. This approach has the
potential to reshape how financial institutions manage fraud detection in large-scale, multi-tenant, resource-constrained
cloud environments.

VI. FUTURE WORK

While this study lays the conceptual foundation for GRA-AI-Cloud, actual deployment in real-world financial
environments requires further research and development. First, access to real-world petabyte-scale credit card
transaction datasets — across multiple institutions — is essential for validating the framework under realistic data
heterogeneity, privacy constraints, and regulatory compliance. Establishing partnerships with banks or payment
providers, under strict data anonymization and compliance protocols, would enable robust empirical assessment.

Second, the construction of reference behavior profiles (legitimate vs. fraudulent) — critical for GRA — should be
revisited: rather than static, one-time templates, future research should explore adaptive reference profiles that evolve
over time (e.g., using sliding windows, clustering of recent transaction behavior) to better reflect changing transact

tion norms and fraud patterns. This would improve the sensitivity and relevance of feature ranking over time.

Third, integration with explainable AI (XAI) methods is necessary: for compliance and trust, flagged transactions
should come with transparent reasons (e.g., which features contributed most, what network/graph signals triggered
alert). Combining GRA (feature ranking) with interpretable models (e.g., decision rule extraction, SHAP/LIME for
ensemble models) would enhance trust and regulatory accountability.

Fourth, research should evaluate privacy-preserving architectures — e.g., federated learning or differential privacy
— enabling multiple financial institutions (tenants) to share a common detection backbone without exposing sensitive
customer data.

Fifth, performance under real-time, high-throughput workloads — including bursty transaction spikes — needs stress-
testing, along with reliability under noisy-neighbor conditions in multi-tenant clouds. Finally, extend the framework
beyond credit card fraud to other payment modalities (digital wallets, mobile payments, cross-border transactions), and
incorporate non-transactional data (device fingerprints, geolocation, user behavior) for richer fraud detection.
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