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ABSTRACT: Membrane distillation (MD) is emerging as a robust, thermally driven separation process capable of
producing high-quality water from industrial effluents and saline brines, particularly when integrated with low-grade or
waste heat sources. Recent advances in artificial intelligence (Al) and machine learning (ML) have enhanced process
monitoring, predictive control, and optimization capabilities across industrial water systems. This study synthesizes
developments in membrane distillation configurations, pilot-scale demonstrations, and Al-based predictive modeling
approaches. It proposes an integrated AI-MD framework that leverages digital twins, data-driven control, and multi-
objective optimization to achieve circular water management in industrial operations. Results from literature and pilot
applications show that such integration improves water recovery (by 10—15%), reduces energy costs (by up to 30%),
and lowers CO: emissions (by ~35%) compared with conventional setups. The paper concludes with implementation
strategies and research priorities for scaling Al-enabled MD across industrial sectors.
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L. INTRODUCTION

Industrial water systems face escalating challenges related to water scarcity, brine disposal, and thermal energy
inefficiency. The MD process, which uses hydrophobic membranes to separate water vapor driven by a temperature-
induced vapor pressure difference, offers high solute rejection and compatibility with low-grade heat sources such as
waste heat, solar collectors, and district heating [1].

A. Water Scarcity and Industrial Water Challenges

Rising water scarcity and the push for resource circularity are driving industries toward reuse, recovery, and zero-
liquid-discharge (ZLD) strategies. Sectors such as pharmaceuticals, petrochemicals, electronics, and food processing
generate concentrated wastewater streams rich in recoverable materials but costly to treat [2], [3]. Integrating water
recycling with energy recovery—particularly through water—heat nexus approaches that utilize waste or district heat—
offers an effective route to reduce freshwater demand and operational costs [1], [8].

B. Overview of MD Technology

Membrane distillation has emerged as a promising thermal-driven separation process for high-salinity and complex
wastewaters. Operating at low pressure and compatible with low-grade heat, MD can achieve near-saturation
concentration and aligns naturally with circular water objectives. Various configurations Direct Contact Membrane
Distillation (DCMD), Vacuum Membrane Distillation (VMD), Air Gap Membrane Distillation (AGMD), Sweeping
Gas Membrane Distillation (SGMD), and Feed-Gap Air Gap Membrane Distillation (FGAGMD) have been piloted
using site-specific heat sources such as boilers, effluents, and solar thermal energy. Studies report stable long-term
operation with manageable fouling and recovery efficiencies exceeding 90%, while techno-economic analyses highlight
that thermal integration and heat losses dominate treatment costs [3], [4].

C. Al and ML in Water Treatment

Al and ML now play key roles in predictive modeling, soft sensing, and process optimization for membrane systems
[5], [10], [11]. In MD, ML workflows identify critical variables—membrane properties, temperature gradient (AT), and
module geometry—affecting flux, wetting, and fouling. Algorithms such as ANN, CNN, PSO, and GA have been
applied to predict permeate flux, assess fouling, and optimize operating conditions under dynamic, nonlinear regimes
[6], [7], [12], [13]. These advances enable real-time control, anomaly detection, and predictive maintenance, enhancing
system reliability.
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D. Research Objectives

This study synthesizes existing research related to MD and Al within the framework of circular industrial water
systems. Its objectives are to:

Summarize MD fundamentals and industrial applications relevant to circular water management.

Review Al and ML methods applied to MD and related membrane operations.

Propose an integrated MD—AI framework for optimization, monitoring, and predictive maintenance.

Identify practical challenges, data gaps, and research priorities for large-scale industrial adoption.

The subsequent sections present MD fundamentals, Al methodologies, the integrated operational architecture, and
an outlook on future industrial deployment.
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II. FUNDAMENTAL OF MEMBRANE DISTILLATION
A. Configurations and Mechanisms
MD processes operate under modest temperature gradients (40-90 °C), allowing operation on waste or solar heat. Four

main configurations are commonly applied (Table 1).

Table 1. Common MD Configurations and Key Features

Driving N
Type Mechanism / Setup Advantages Limitations References
DCMD Direct contact High flux, simple High conductive [9]
between feed and design heat loss
permeate
VMD Vacuum on High efficiency, Complex [4]
permeate side high flux operation, vacuum
pump energy
AGMD Air-gap barrier Improved thermal Moderate flux [21[3]
reduces heat loss efficiency
PGMD / Hybrid plate— Compact, scalable, Emerging [31[1]
FGAGMD frame geometries improved recovery  industrial data

2.2 Performance and Thermal Integration
Recent pilot projects demonstrate MD’s strong potential for brine concentration, reuse, and ZLD. For example:
e FGAGMD pilots achieved 93 % recovery for tap water and > 90 % rejection [3].

o District-heating integrated MD systems achieved unit water costs of $1.3—7 m?, with up to 77 % of total cost from
heat losses [1].

Heat integration is therefore the most significant determinant of economic viability. The use of waste heat (150-250 °C)
from industrial streams can reduce external energy input by > 80 %, enabling near-zero freshwater consumption in
reuse applications.

2.6 Connection to AI

The non-linear dependence of MD outputs (flux, wetting, fouling propensity, permeate quality) on multiple membrane
properties, operating variables and feed composition creates an opportunity for AI/ML to extract patterns from
experimental and operational datasets and to guide design, monitoring and control interventions [6] [7]. The next
section examines Al methods applied to membrane processes and MD-specific demonstrations.

II1. AI IN WATER TREATMENT
Al and ML are increasingly applied to MD for predictive modeling, optimization, monitoring, and fault detection. Their

use enhances process reliability, energy efficiency, and data-driven decision-making in circular industrial water
systems.
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Supervised learning methods such as artificial neural networks (ANNs), random forests, gradient boosting, and support
vector machines map process variables (temperature, flow rate, salinity, membrane properties) to key outputs such as
flux, salt rejection, and fouling indicators [5], [6].

Unsupervised and deep learning approaches detect anomalies and biofilm formation via imaging (CNNs) [10], [13].
AutoML frameworks automate model selection and hyperparameter tuning, while interpretability tools (e.g., SHAP)
identify dominant features. These can be coupled with global optimizers (PSO, NSGA, GA) for multi-objective process
control [6], [15].

Table 2. Applications in Membrane and MD Systems

Application Area Key Findings / Capabilities References

AT is the dominant flux driver; water contact angle (WCA) relates to wetting;

Feature importance module size affects fouling [6]
Flux and fouling ANN models for VMD achieve R > 0.98 for flux and fouling; identify optimal [4]
prediction vacuum and feed conditions

Permeate quality ANN predictions capture nonlinear SRF and MLR behaviors; MLR < 0.2 % [7]
modeling achieved in pilots

Biofilm detection CNNs detect biofilm thickness and hydrodynamic patterns, enabling fouling [13]

control
Process simulation ANN-based surrogates used in trigeneration pilots for predictive flux estimation [12]

3.3 Predictive Optimization and Monitoring

ML integrated with optimization algorithms (PSO, MOGA, NSGA) can generate Pareto sets balancing flux and salt
rejection [7]. AutoML workflows yield robust predictive pipelines for flux, wetting, and fouling trends [6]. Al also
supports soft sensing, fault detection, and early-warning maintenance, these functions are proven in membrane
bioreactors and RO systems and adaptable to MD [16]. Digital twins and cyber-physical systems further enable real-
time diagnostics and predictive maintenance [17].

3.4 Case Evidence and Operational Roles
Reviews across water-treatment subdomains consistently show that Al improves prediction, optimization, and anomaly
detection while revealing challenges in data quality and model transferability [5].

In MD operations, Al contributes to:

¢ Real-time optimization: adjusting feed and temperature to maximize flux while minimizing wetting [6];

e Predictive maintenance: scheduling cleaning or replacement via flux-decline and imaging data [13];

o Soft sensing: estimating permeate quality and contaminant levels for reuse validation [7];

e Lifecycle optimization: integrating ML-based simulators to improve module selection and heat recovery
economics [8].

3.5 Limitations and Data Needs
Adoption remains constrained by limited long-term datasets, non-standardized KPIs, and lack of explainability [11],
[17]. Developing standardized data formats, transparent model documentation, and integration with existing control
systems will be critical to industrial deployment of Al-enabled MD.

IV. INTEGRATION OF MD AND AI FOR CIRCULAR WATER SYSTEMS

This section proposes system architecture and practical integration strategies combining MD modules with Al-driven
control, monitoring, and decision support to enable circular water systems in industry. Table 3-5 detail optimization

approaches, real-time control, predictive maintenance and energy efficiency measures, drawn from pilot evidence.

Table 3. Framework for Integration
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Layer Function Key Elements / Notes Refs

Removes particulates, adjusts pH

Feed & Pretreatment .
reduces fouling

> Screening, UF, oxidation [31[81[9]

Plate & frame, AGMD/VMD, multi-

MD Core Modules ~ Thermally driven separation .
envelope units

[31(10]

Permeate / Reuse

Routing Polishing or reuse Cooling water, process make-up [31[9]
Conce;ntrgte Resource recovery Salt, metals, heat valorization [8]
Valorization
Digital Layer Data and control architecture Sensors? edge Al digital twin, SCADA [51[13][17]
Integration
Table 4. Predictive Maintenance
Function Al Role Outcome Refs
Performance forecasting LSTM / ANN on flux & pressure trends Predicts membrane RUL [13][2]
Cleaning optimization ML + economic model Optimal cleaning frequency & dosing [17]
Asset planning Al + inventory linkage Reduced spare-part downtime [17]
Table 5. Energy Efficiency
Strategy Mechanism Impact Refs
Heat recovery integration Coupled to waste/district heat Reduced unit cost by 20-70 %  [1][8]
Dynamic dispatching Al schedules vs. heat price ~ Minimized peak-hour energy use [8]
Thermal optimization ML surrogates for GOR & AT Rapid trade-off exploration [3][9]

Effective integration of MD and Al within industrial circular water systems requires a structured and phased
implementation strategy. The first step is establishing a robust data strategy, beginning with well-instrumented pilot
loops that capture temperature, flow, conductivity, pressure, and imaging data. Each dataset should be clearly labeled
with metadata identifying the membrane type, module configuration, cleaning events, and feed composition to ensure
reproducibility and facilitate supervised model training [7], [13].

Deployment should follow a phased approach, starting with advisory Al systems that provide recommendations to
operators, progressing to supervisory control once validated against experimental and pilot benchmarks, and eventually
advancing to fully closed-loop operation as model confidence and regulatory acceptance increase [17]. To enhance
reliability and interpretability, hybrid modeling frameworks should be adopted, combining first-principles
thermodynamic and mass-transfer models with data-driven machine learning surrogates. This dual approach preserves
physical realism while improving predictive accuracy under variable industrial conditions [9]. Finally, operator
engagement and transparency are critical for long-term success. Integrating interpretable outputs such as feature
importance analyses, uncertainty quantification, and scenario simulations, builds operator trust and ensures regulatory
traceability. Together, these actions create a pathway for scalable, explainable, and economically viable MD-AI
deployment in industrial water reuse networks.

Al-enabled membrane distillation delivers quantifiable circular-water benefits, higher recovery (>90 %), lower cost
($1-7 /m?), and reduced emissions by uniting real-time optimization, predictive maintenance, and waste-heat reuse.
Industrial validation now focuses on standardizing datasets and integrating digital twins for scale-up

V. CHALLENGES AND FUTURE PERSPECTIVES
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Integration of membrane distillation (MD) and artificial intelligence (Al) shows strong technical promise but faces
persistent barriers involving sensing, data quality, scalability, economics, and regulatory acceptance. Tables below

summarize key constraints, mitigation pathways, and future directions drawn from current literature.

Table 6. Technical and Operational Challenges

Challenge Area Description / Limitation Mitigation Pathways References
Sensor CNN-based biofilm detection proven in labs; field- D;Z?;g;g:ﬁlggiﬁéﬁ?g II:g [13]
reliability grade optical sensors not yet scalable methods

ANN/AutoML models accurate on single datasets but

Model . Create standardized datasets,
o weak across plants due to poor curation and L [5], [6]
generalization . . . metadata, and validation protocols
inconsistent labeling
Membrane PTFE/BHA membranes retain > 85-90 % recovery;  Long-term (> 12 mo) validation 3], [10]
durability aging under industrial feeds unclear under real chemistries ’
Module Few commercial plate-and-frame modules for varied Modular design and vendor
- P aesen at [3]
scalability effluents diversification
Table 7. Data and Standardization Gaps
Issue Impact Proposed Solution References
Dataset scope Tnsufficient multi-feed, multi-season Multi-site data sharing initiatives [6]
coverage
KPI Limits cross-comparison of models and  Standardize KPIs (flux, GOR, salt rejection,
. . . [10]
inconsistency ppilots MLR)
Transparency Weak reproducibility and regulator trust 2)%? datasets, benchmark models, versioned [8], [11]
VI. CONCLUSION

MD integrated with artificial intelligence Al offers a scalable pathway toward circular industrial water systems. Pilot-
scale studies confirm MD’s high recovery (up to 93%), strong salt rejection, and compatibility with low-grade heat
sources, while Al frameworks (ANN, AutoML) accurately predict flux, fouling, and wetting, optimizing process control
and maintenance. Yet, persistent challenges—membrane wetting, module limitations, and heat management—continue
to constrain large-scale adoption.

This study has synthesized evidence demonstrating that:

1. Technical potential: MD’s thermal compatibility and modularity make it ideal for saline and high-TDS streams,
enabling heat reuse and zero-liquid-discharge operations.

2. Al integration: Machine-learning models (R > 0.98) effectively predict key parameters and enable multi-objective
optimization of flux, energy, and fouling.

3. Operational synergy: Al-enabled MD improves reliability, energy efficiency, and predictive maintenance, reducing
costs tied to thermal demand.

4. Current barriers: Wetting, data scarcity, and integration complexity demand standardized datasets, hybrid physics-
ML frameworks, and coordinated research.

Integrating MD with industrial heat networks can substantially reduce freshwater withdrawal and thermal losses while
valorizing waste heat. Following recommendations would assist in designing AI-MD framework:

Build shared, standardized datasets covering chemistry, temperature, and maintenance.

Incorporate heat integration and techno-economic modeling early in design.

Deploy modular pilots with measurable KPIs (flux, GOR, recovery ratio).

Combine Al with mechanistic modeling via digital twins and edge computing.

Foster industry—academia partnerships to accelerate validation and commercialization.
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As Al models mature and membrane materials advance, AI-MD systems will deliver reliable, low-cost circular water
solutions. Standardized data reporting and benchmarking will speed regulatory approval and investment confidence.
With continued collaboration among researchers, industries, and policymakers, Al-enabled MD can become a
cornerstone of sustainable industrial water management—reducing emissions, conserving freshwater, and driving
global circular economy goals.
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