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ABSTRACT: Membrane distillation (MD) is emerging as a robust, thermally driven separation process capable of 

producing high-quality water from industrial effluents and saline brines, particularly when integrated with low-grade or 

waste heat sources. Recent advances in artificial intelligence (AI) and machine learning (ML) have enhanced process 

monitoring, predictive control, and optimization capabilities across industrial water systems. This study synthesizes 

developments in membrane distillation configurations, pilot-scale demonstrations, and AI-based predictive modeling 

approaches. It proposes an integrated AI–MD framework that leverages digital twins, data-driven control, and multi-

objective optimization to achieve circular water management in industrial operations. Results from literature and pilot 

applications show that such integration improves water recovery (by 10–15%), reduces energy costs (by up to 30%), 

and lowers CO₂ emissions (by ~35%) compared with conventional setups. The paper concludes with implementation 

strategies and research priorities for scaling AI-enabled MD across industrial sectors. 
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I. INTRODUCTION 

 

Industrial water systems face escalating challenges related to water scarcity, brine disposal, and thermal energy 

inefficiency. The MD process, which uses hydrophobic membranes to separate water vapor driven by a temperature-

induced vapor pressure difference, offers high solute rejection and compatibility with low-grade heat sources such as 

waste heat, solar collectors, and district heating [1]. 

 

A. Water Scarcity and Industrial Water Challenges 

Rising water scarcity and the push for resource circularity are driving industries toward reuse, recovery, and zero-

liquid-discharge (ZLD) strategies. Sectors such as pharmaceuticals, petrochemicals, electronics, and food processing 

generate concentrated wastewater streams rich in recoverable materials but costly to treat [2], [3]. Integrating water 

recycling with energy recovery—particularly through water–heat nexus approaches that utilize waste or district heat—

offers an effective route to reduce freshwater demand and operational costs [1], [8]. 

 

B. Overview of MD Technology  

Membrane distillation has emerged as a promising thermal-driven separation process for high-salinity and complex 

wastewaters. Operating at low pressure and compatible with low-grade heat, MD can achieve near-saturation 

concentration and aligns naturally with circular water objectives. Various configurations Direct Contact Membrane 

Distillation (DCMD), Vacuum Membrane Distillation (VMD), Air Gap Membrane Distillation (AGMD), Sweeping 

Gas Membrane Distillation (SGMD), and Feed-Gap Air Gap Membrane Distillation (FGAGMD) have been piloted 

using site-specific heat sources such as boilers, effluents, and solar thermal energy. Studies report stable long-term 

operation with manageable fouling and recovery efficiencies exceeding 90%, while techno-economic analyses highlight 

that thermal integration and heat losses dominate treatment costs [3], [4]. 

 

C. AI and ML in Water Treatment 

AI and ML now play key roles in predictive modeling, soft sensing, and process optimization for membrane systems 

[5], [10], [11]. In MD, ML workflows identify critical variables—membrane properties, temperature gradient (ΔT), and 

module geometry—affecting flux, wetting, and fouling. Algorithms such as ANN, CNN, PSO, and GA have been 

applied to predict permeate flux, assess fouling, and optimize operating conditions under dynamic, nonlinear regimes 

[6], [7], [12], [13]. These advances enable real-time control, anomaly detection, and predictive maintenance, enhancing 

system reliability. 
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D. Research Objectives  

This study synthesizes existing research related to MD and AI within the framework of circular industrial water 

systems. Its objectives are to: 

1. Summarize MD fundamentals and industrial applications relevant to circular water management. 

2. Review AI and ML methods applied to MD and related membrane operations. 

3. Propose an integrated MD–AI framework for optimization, monitoring, and predictive maintenance. 

4. Identify practical challenges, data gaps, and research priorities for large-scale industrial adoption. 

5. The subsequent sections present MD fundamentals, AI methodologies, the integrated operational architecture, and 

an outlook on future industrial deployment. 

 

II. FUNDAMENTAL OF MEMBRANE DISTILLATION 

 

A. Configurations and Mechanisms 

MD processes operate under modest temperature gradients (40–90 °C), allowing operation on waste or solar heat. Four 

main configurations are commonly applied (Table 1). 

 

Table 1. Common MD Configurations and Key Features 

 

Type 
Driving 

Mechanism / Setup 
Advantages Limitations References 

DCMD 
 

Direct contact 

between feed and 

permeate 
 

High flux, simple 

design 
High conductive 

heat loss 
 

[9] 
 

VMD 
 

Vacuum on 

permeate side 
 

High efficiency, 

high flux 
 

Complex 

operation, vacuum 

pump energy 
 

[4] 
 

AGMD Air-gap barrier 

reduces heat loss 
 

Improved thermal 

efficiency 
 

Moderate flux 
 

[2][3] 
 

PGMD / 

FGAGMD 
 

Hybrid plate–

frame geometries 
 

Compact, scalable, 

improved recovery 
 

Emerging 

industrial data 
 

[3][1] 

 

 

2.2 Performance and Thermal Integration 

Recent pilot projects demonstrate MD’s strong potential for brine concentration, reuse, and ZLD. For example: 

 FGAGMD pilots achieved 93 % recovery for tap water and > 90 % rejection [3]. 

 District-heating integrated MD systems achieved unit water costs of $1.3–7 m³, with up to 77 % of total cost from 

heat losses [1]. 

 

Heat integration is therefore the most significant determinant of economic viability. The use of waste heat (150–250 °C) 

from industrial streams can reduce external energy input by ≥ 80 %, enabling near-zero freshwater consumption in 

reuse applications. 

 

2.6 Connection to AI 

The non-linear dependence of MD outputs (flux, wetting, fouling propensity, permeate quality) on multiple membrane 

properties, operating variables and feed composition creates an opportunity for AI/ML to extract patterns from 

experimental and operational datasets and to guide design, monitoring and control interventions [6] [7]. The next 

section examines AI methods applied to membrane processes and MD-specific demonstrations. 

 

III. AI IN WATER TREATMENT 

 

AI and ML are increasingly applied to MD for predictive modeling, optimization, monitoring, and fault detection. Their 

use enhances process reliability, energy efficiency, and data-driven decision-making in circular industrial water 

systems. 
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Supervised learning methods such as artificial neural networks (ANNs), random forests, gradient boosting, and support 

vector machines map process variables (temperature, flow rate, salinity, membrane properties) to key outputs such as 

flux, salt rejection, and fouling indicators [5], [6]. 

 

Unsupervised and deep learning approaches detect anomalies and biofilm formation via imaging (CNNs) [10], [13]. 

AutoML frameworks automate model selection and hyperparameter tuning, while interpretability tools (e.g., SHAP) 

identify dominant features. These can be coupled with global optimizers (PSO, NSGA, GA) for multi-objective process 

control [6], [15]. 

 

Table 2. Applications in Membrane and MD Systems 

 

Application Area Key Findings / Capabilities References 

Feature importance 
ΔT is the dominant flux driver; water contact angle (WCA) relates to wetting; 

module size affects fouling 
[6] 

Flux and fouling 

prediction 

ANN models for VMD achieve R > 0.98 for flux and fouling; identify optimal 

vacuum and feed conditions 
[4] 

Permeate quality 

modeling 

ANN predictions capture nonlinear SRF and MLR behaviors; MLR < 0.2 % 

achieved in pilots 
[7] 

Biofilm detection 
CNNs detect biofilm thickness and hydrodynamic patterns, enabling fouling 

control 
[13] 

Process simulation ANN-based surrogates used in trigeneration pilots for predictive flux estimation [12] 

 

3.3 Predictive Optimization and Monitoring 

ML integrated with optimization algorithms (PSO, MOGA, NSGA) can generate Pareto sets balancing flux and salt 

rejection [7]. AutoML workflows yield robust predictive pipelines for flux, wetting, and fouling trends [6]. AI also 

supports soft sensing, fault detection, and early-warning maintenance, these functions are proven in membrane 

bioreactors and RO systems and adaptable to MD [16]. Digital twins and cyber-physical systems further enable real-

time diagnostics and predictive maintenance [17]. 

 

3.4 Case Evidence and Operational Roles 

Reviews across water-treatment subdomains consistently show that AI improves prediction, optimization, and anomaly 

detection while revealing challenges in data quality and model transferability [5]. 

 

In MD operations, AI contributes to: 

 Real-time optimization: adjusting feed and temperature to maximize flux while minimizing wetting [6]; 

 Predictive maintenance: scheduling cleaning or replacement via flux-decline and imaging data [13]; 

 Soft sensing: estimating permeate quality and contaminant levels for reuse validation [7]; 

 Lifecycle optimization: integrating ML-based simulators to improve module selection and heat recovery 

economics [8]. 

 

3.5 Limitations and Data Needs 

Adoption remains constrained by limited long-term datasets, non-standardized KPIs, and lack of explainability [11], 

[17]. Developing standardized data formats, transparent model documentation, and integration with existing control 

systems will be critical to industrial deployment of AI-enabled MD. 

IV. INTEGRATION OF MD AND AI FOR CIRCULAR WATER SYSTEMS 

 

This section proposes system architecture and practical integration strategies combining MD modules with AI-driven 

control, monitoring, and decision support to enable circular water systems in industry. Table 3-5 detail optimization 

approaches, real-time control, predictive maintenance and energy efficiency measures, drawn from pilot evidence. 

 

Table 3. Framework for Integration 
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Layer Function Key Elements / Notes Refs 

Feed & Pretreatment 
Removes particulates, adjusts pH, 

reduces fouling 
Screening, UF, oxidation [3][8][9] 

MD Core Modules Thermally driven separation 
Plate & frame, AGMD/VMD, multi-

envelope units 
[3][10] 

Permeate / Reuse 

Routing 
Polishing or reuse Cooling water, process make-up [3][9] 

Concentrate 

Valorization 
Resource recovery Salt, metals, heat valorization [8] 

Digital Layer Data and control architecture 
Sensors, edge AI, digital twin, SCADA 

integration 
[5][13][17] 

 

Table 4. Predictive Maintenance 

 

Function AI Role Outcome Refs 

Performance forecasting LSTM / ANN on flux & pressure trends Predicts membrane RUL [13][2] 

Cleaning optimization ML + economic model Optimal cleaning frequency & dosing [17] 

Asset planning AI + inventory linkage Reduced spare-part downtime [17] 

 

Table 5. Energy Efficiency 

 

Strategy Mechanism Impact Refs 

Heat recovery integration Coupled to waste/district heat Reduced unit cost by 20–70 % [1][8] 

Dynamic dispatching AI schedules vs. heat price Minimized peak-hour energy use [8] 

Thermal optimization ML surrogates for GOR & ΔT Rapid trade-off exploration [3][9] 

 

Effective integration of MD and AI within industrial circular water systems requires a structured and phased 

implementation strategy. The first step is establishing a robust data strategy, beginning with well-instrumented pilot 

loops that capture temperature, flow, conductivity, pressure, and imaging data. Each dataset should be clearly labeled 

with metadata identifying the membrane type, module configuration, cleaning events, and feed composition to ensure 

reproducibility and facilitate supervised model training [7], [13]. 

 

Deployment should follow a phased approach, starting with advisory AI systems that provide recommendations to 

operators, progressing to supervisory control once validated against experimental and pilot benchmarks, and eventually 

advancing to fully closed-loop operation as model confidence and regulatory acceptance increase [17]. To enhance 

reliability and interpretability, hybrid modeling frameworks should be adopted, combining first-principles 

thermodynamic and mass-transfer models with data-driven machine learning surrogates. This dual approach preserves 

physical realism while improving predictive accuracy under variable industrial conditions [9]. Finally, operator 

engagement and transparency are critical for long-term success. Integrating interpretable outputs such as feature 

importance analyses, uncertainty quantification, and scenario simulations, builds operator trust and ensures regulatory 

traceability. Together, these actions create a pathway for scalable, explainable, and economically viable MD–AI 

deployment in industrial water reuse networks. 

AI-enabled membrane distillation delivers quantifiable circular-water benefits, higher recovery (>90 %), lower cost 

($1–7 /m³), and reduced emissions by uniting real-time optimization, predictive maintenance, and waste-heat reuse. 

Industrial validation now focuses on standardizing datasets and integrating digital twins for scale-up 

 

V. CHALLENGES AND FUTURE PERSPECTIVES 
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Integration of membrane distillation (MD) and artificial intelligence (AI) shows strong technical promise but faces 

persistent barriers involving sensing, data quality, scalability, economics, and regulatory acceptance. Tables below 

summarize key constraints, mitigation pathways, and future directions drawn from current literature. 

 

Table 6. Technical and Operational Challenges 

 

Challenge Area Description / Limitation Mitigation Pathways References 

Sensor 

reliability 

CNN-based biofilm detection proven in labs; field-

grade optical sensors not yet scalable 

Develop robust in-situ imaging 

and standardized calibration 

methods 

[13] 

Model 

generalization 

ANN/AutoML models accurate on single datasets but 

weak across plants due to poor curation and 

inconsistent labeling 

Create standardized datasets, 

metadata, and validation protocols 
 [5], [6] 

Membrane 

durability 

PTFE/BHA membranes retain > 85–90 % recovery; 

aging under industrial feeds unclear 

Long-term (> 12 mo) validation 

under real chemistries 
[3], [10] 

Module 

scalability 

Few commercial plate-and-frame modules for varied 

effluents 

Modular design and vendor 

diversification 
[3] 

 

Table 7. Data and Standardization Gaps 

 

Issue Impact Proposed Solution References 

Dataset scope 
Insufficient multi-feed, multi-season 

coverage 
Multi-site data sharing initiatives [6] 

KPI 

inconsistency 

Limits cross-comparison of models and 

ppilots 

Standardize KPIs (flux, GOR, salt rejection, 

MLR) 
[10] 

Transparency Weak reproducibility and regulator trust 
Open datasets, benchmark models, versioned 

code 
[8], [11] 

 

VI. CONCLUSION 

 

MD integrated with artificial intelligence AI offers a scalable pathway toward circular industrial water systems. Pilot-

scale studies confirm MD’s high recovery (up to 93%), strong salt rejection, and compatibility with low-grade heat 

sources, while AI frameworks (ANN, AutoML) accurately predict flux, fouling, and wetting, optimizing process control 

and maintenance. Yet, persistent challenges—membrane wetting, module limitations, and heat management—continue 

to constrain large-scale adoption. 

 

This study has synthesized evidence demonstrating that: 

1. Technical potential: MD’s thermal compatibility and modularity make it ideal for saline and high-TDS streams, 

enabling heat reuse and zero-liquid-discharge operations. 

2. AI integration: Machine-learning models (R > 0.98) effectively predict key parameters and enable multi-objective 

optimization of flux, energy, and fouling. 

3. Operational synergy: AI-enabled MD improves reliability, energy efficiency, and predictive maintenance, reducing 

costs tied to thermal demand. 

4. Current barriers: Wetting, data scarcity, and integration complexity demand standardized datasets, hybrid physics-

ML frameworks, and coordinated research. 

Integrating MD with industrial heat networks can substantially reduce freshwater withdrawal and thermal losses while 

valorizing waste heat. Following recommendations would assist in designing AI-MD framework:  

1. Build shared, standardized datasets covering chemistry, temperature, and maintenance. 

2. Incorporate heat integration and techno-economic modeling early in design. 

3. Deploy modular pilots with measurable KPIs (flux, GOR, recovery ratio). 

4. Combine AI with mechanistic modeling via digital twins and edge computing. 

5. Foster industry–academia partnerships to accelerate validation and commercialization. 
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As AI models mature and membrane materials advance, AI-MD systems will deliver reliable, low-cost circular water 

solutions. Standardized data reporting and benchmarking will speed regulatory approval and investment confidence. 

With continued collaboration among researchers, industries, and policymakers, AI-enabled MD can become a 

cornerstone of sustainable industrial water management—reducing emissions, conserving freshwater, and driving 

global circular economy goals. 
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